что такое угол сдвига фаз

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

moschnost formula

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

sdvig faz 0

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

sdvig faz 45

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

sdvig faz 90

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost formula no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Понятие сдвига фазы в аналоговых цепях

Угол сдвига фаз между током и напряжением

lazy placeholder

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

lazy placeholder lazy placeholder lazy placeholder

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.

lazy placeholder

Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Отсюда можно найти реактивную составляющую:

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

Способы компенсации

Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.

Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.

На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.

lazy placeholder

Рис. 3. Устройство компенсации

Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).

lazy placeholder

Рис. 4. Компенсация реактивной мощности с помощью конденсаторов

Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.

Как измеряется угол сдвига фаз осциллографом

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

lazy placeholder

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

lazy placeholder

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

Читайте также:  с чем лучше делать цефтриаксон

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

lazy placeholder lazy placeholder lazy placeholder

Измерение фазового сдвига

Фазовый сдвиг

Это определение распространяется на два периодических сигнала несинусоидальной формы (рис.11.1 б), если в момент перехода через ноль их напряжения изменяются в одну сторону (например, от положительных значений к отрицательным).

lazy placeholder

Рис. 11.1.
Необходимость измерения фазового сдвига возникает при исследованиях фазочастотных характеристик радиотехнических устройств, измерениях реактивной мощности, оценке свойств веществ.

Приборы для измерения разности фаз называют фазометрами или измерителями фазового сдвига и согласно ГОСТ15094 подразделяются на:

Методы измерения фазового сдвига весьма разнообразны и зависят от диапазона частот, требуемой точности и от формы исследуемых сигналов. На практике нашли применение следующие методы:

Осциллографический метод

Этот метод реализуется с помощью линейной, синусоидальной и круговой разверток.

Метод линейной развертки

Для этого используется двухлучевой или двухканальный осциллограф. На входы Y1 и Y2 подаются исследуемые сигналы. Частота развертки подбирается так, чтобы на экране наблюдалось 1-2 периода сигналов (рис.11.1 а). Измерив Т и по формуле определяют фазовый сдвиг, где ab и ac – измеренные на экране ЭЛТ длины отрезков.

Метод синусоидальной развертки

Метод может быть реализован с помощью однолучевого осциллографа. Один сигнал подается в канал Y, а второй – на канал Х (генератор развертки отключен). На экране осциллографа получается эллипс (рис. 11.2 рис. 11.2.), уравнение которого

где a, b – максимальные отклонения по горизонтали и вертикали соответственно.
Рис. 11.2.
Существует ряд методов определения фазового сдвига по полученной фигуре.

Метод неточен из-за трудности определения центра эллипса, но зато полученные формулы не зависят от соотношений Ux и Uy.

Осциллографический метод прост, не требует дополнительных приборов, но не даёт однозначности (знак угла) и обладает большой субъективной погрешностью. Погрешность определения фазового сдвига составляет 5-10% из-за неточностей определения длин отрезков, искажений эллипса.

Метод круговой развертки

При использовании этого метода опорное напряжение с помощью фазовращателя ФВ расщепляется по фазе и в виде двух сдвинутых на 90o напряжений подается на вход усилителей У1 и У2 каналов X и Y (рис.11.3). Регулировкой коэффициентов усиления и установлением фазовой симметрии в обоих каналах добиваются получения круговой развертки.

lazy placeholder

Рис. 11.3.
Метод круговой развертки

Напряжение исследуемого сигнала подается на модулирующий электрод ЭЛТ (канал Z). На время отрицательного полупериода ЭЛТ запирается и на экране становится видимой только половина окружности. Для обеспечения необходимой точности измерений необходимо, чтобы трубка запиралась в моменты перехода сигнала через ноль, что обеспечивается применением усилителя-ограничителя УО.

В процессе измерения фазового сдвига на вход УО сначала подается опорное напряжение (положение 1) и по полуокружности на экране ЭЛТ отмечается положение диаметра mn, являющегося началом отсчета. Затем на УО подается измеряемый сигнал (положение 2) и отмечается положение pq. Измеряемый фазовый угол равен углу между прямыми mn и pq.

Источниками погрешности являются: непостоянство частоты круговой развертки, погрешность измерения угла между диаметрами, погрешность УО.

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Источник

Угол сдвига фаз между током и напряжением

0014

Начальные фазы электромагнитных синусоидальных колебаний первичного и вторичного напряжения, с частотой одинаковой величины, могут существенно различаться на некоторый угол сдвига фаз (угол φ). Переменные величины могут неоднократно в течение определенного периода некоторого времени изменяются с определенной частотой. Если электрические процессы имеют неизменный характер, а сдвиг фаз равен нулю, это свидетельствует о синхронизме источников величин переменного напряжения, например, трансформаторов. Сдвиг фазы служит определяющим фактором коэффициента мощности в электрических сетях переменного тока.

Угол сдвига фаз находится при необходимости, тогда, если один из сигналов является опорным, а второй сигнал с фазой в самом начале совпадает с углом сдвига фаз.

Измерение угла сдвига фаз производится прибором, в котором присутствует нормированная погрешность.

Методы измерения угла сдвига фаз

Существует несколько способов измерения угла сдвига фаз, это:

Как измеряется угол сдвига фаз осциллографом

Определение угла сдвига фаз зависит от характера нагрузки. При определении фазного сдвига в первичной и вторичной цепях трансформатора, углы могут считаться равными и практически не отличаются друг от друга.

Угол сдвига фаз между током и напряжением в несимметричных трехфазных цепях не равны друг другу. Для того чтобы вычислить угол сдвига фаз (угол φ) в цепь включают последовательно присоединенные сопротивления (резисторы), индуктивности и конденсаторы (емкости).

0015

Рис. №1. Последовательное соединение сопротивления, индуктивности и емкости для вычисления угла сдвига фаз. В этом контуре протекает переменный ток, который способствует возникновению ЭДС.

0023

Рис. №2. Схема проведения опыта по определению сдвига фаз между током и напряжением. Слева показаны схемы подключения конденсаторов, катушек индуктивности и резисторов, справа показаны результаты опыта.

Из результатов опыта можно определить, что сдвиг фаз между напряжением и током служит при определении нагрузки и не может зависеть от переменных величины тока и напряжения в электрической сети.

Как вывод, можно сказать, что:

Угол сдвига фаз между напряжением и током всегда выражается, как главный аргументированный фактор комплексного сопротивления φ.

Источник

Начальная фаза. Сдвиг фаз

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

image187 Предположим, что в магнитном поле генератора находится два одинаковых витка, сдвинутых в пространстве друг относительно друга на угол image188. При вращении в них буду находится ЭДС одинаковой частоты и амплитуды.

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени image189ЭДС витка будет:

image190

image191

В этих выражениях углы image192и image193называются фазными, или фазой. Углы image194и image195называются начальной фазой. Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

image196

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

image197

image198

image199

Графическое изображение синусоидальных величин

Синусоидальные величины можно изображать графически при помощи синусоид или вращающихся векторов.

image201

Любая синусоидальная величина характеризуется:

2. Угловой частотой;

image202

При изображении величины с помощью синусоиды ординаты синусоиды в масштабе представляют собой мгновенное значение, абсциссы – промежутки времени.

При этом длина вектора равна амплитудному значению величины, угол image188между положительным направлением оси абсцисс и векторов даст начальную фазу. Вектор вращается против часовой стрелки с угловой скоростью image203. Проекция конца вектора на ось ординат даст мгновенное значение синусоидальной величины.

Совокупность нескольких синусоид называется синусоидальной (волновой) диаграммой.

Совокупность нескольких векторов называется векторной диаграммой.

Сложение и вычитание синусоидальных величин

image204

image205.

image206

Для сложения двух синусоидальных величин с помощью синусоид необходимо сложить их ординаты в каждый момент времени.

Для того, чтобы сложить две величины с помощью векторов, необходимо к концу первого вектора добавить второй, не изменяя его величины и направления. Соединив начало первого вектора с концом второго, получим суммарный вектор.

image207

image208

image209

image210

image211

image212

image213

Цепи переменного тока с активным сопротивлением

image214 image215

На величину тока и его характер в цепях переменного тока оказывает влияние не только сопротивление, определяемое материалом и геометрическими размерами, но и наличием в цепи емкости и индуктивности. Любая электрическая цепь обладает сопротивлением, индуктивностью и емкостью. Однако, часто тот или иной элемент преобладает над другим, поэтому их влиянием можно пренебречь.

Один и тот же проводник имеет различное сопротивление в цепях постоянного и переменного тока, причем, в цепях переменного тока это сопротивление больше.

image216 — постоянный ток
image217 — переменный ток
Читайте также:  сим абсент что значит

Это объясняется тем, что переменный ток в отличие от постоянного, который протекает по сечению проводника с равномерной плотностью, частично вытесняется из внутренних слоев проводника к наружным. В результате чего плотность тока в различных слоях неодинакова. Это явление называется поверхностным эффектом. Это объясняется тем, что внутренние слои проводника сцеплены с большим числом магнитных силовых линий, чем наружные, и поэтому в них наводится большая ЭДС самоиндукции, которая препятствует протеканию тока и вытесняет его к наружным слоям, где ЭДС самоиндукции меньше.

image218 image219 image220 image221.

Разделив обе части равенства на image222, получим действующие значения image223.

Ток и напряжение в цепи с активным сопротивлением совпадают по фазе.

image224 image225 image226image227

image228

Таким образом, мощность состоит из постоянной составляющей image229и переменной составляющей image230, среднее значение которых за период равно нулю. Таким образом, постоянная составляющая мощности image229выражает среднее за период значение мощности и называется активной мощностью:

image231

Мощность в оба полупериода положительна. Это означает, что цепь с сопротивлением r только потребляет энергию из сети и назад ее не возвращает, т.к. она преобразуется в другие виды энергии.

image232 image233

Цепи переменного тока с индуктивностью

image234 Допустим, что под действием напряжения в этой цепи протекает ток. Под действием переменного тока в катушке возникает переменный магнитный поток, который наводи в ней ЭДС самоиндукции. image235

image236

640 1

ЭДС самоиндукции image237в любой момент времени уравновешивается напряжением:

image238 image239

image240

image241 image242

image243

image244

image245 image246— индуктивное (реактивное) сопротивление.

image247— закон Ома для цепи с индуктивностью.

image248

Физически индуктивное сопротивление характеризует препятствие, оказываемое переменному току в результате наличия ЭДС самоиндукции.

Мощность цепи:

image249

Т.о. мощность изменяется с двойной частотой и может быть положительной и отрицательной. Когда она «+» индуктивность потребляет электрическую энергию от источника и запасает ее от магнитного поля. Когда мощность «-» индуктивность возвращает запасенную энергию обратно к источнику.

Т.о. между источником и индуктивностью происходит непрерывный обмен энергией, при котором:

image250— цепь работает потребителем

image251— цепь работает генератором.

Максимальное значение мощности цепи индуктивности называется реактивной мощностью:

image252

Энергия, запасенная в магнитном поле катушки, равна

image253

Цепь переменного тока с емкостью

image254 image255Под действием этого напряжения конденсатор будет разряжаться и заряжаться. Мгновенное значение заряда на обкладках конденсатора: image256

image257

image258

image259— закон Ома для цепи с емкостью.

image260— реактивное емкостное сопротивление

Физически емкостное сопротивление характеризует препятствие, оказываемое переменному току цепью с емкостью. В результате поляризации диэлектрика конденсатора в нем образуется свое внутренне электрическое поле, которое направлено противоположно внешнему полю, приложенному к диэлектрику.

image261

Мощность цепи:

image262

Мощность изменяется с двойной частотой относительно тока и напряжения. В течении первой четверти периода, когда напряжение, приложенное к конденсатору, возрастает, мгновенная мощность положительна. Это означает, что конденсатор получает и запасает энергию источника в виде электрического поля.

В течении второй четверти, когда напряжение, приложенное к конденсатору, уменьшается, запасенная энергия возвращается к источнику, т.е.

image263— цепь работает потребителем;

image264— цепь работает источником.

Максимальное значение мощности цепи с емкостью называют реактивной емкостной мощностью:

image265

Она характеризует скорость обмена энергией между источником и цепью с емкостью.

Максимальное значение энергии, запасенной в цепи:

image266

Неразветвленная цепь переменного тока с активным сопротивлением и индуктивностью

Таким сопротивлением (активным и индуктивным) обладают катушки индуктивности, обмотки трансформаторов и электрических машин.

image267 image268 image269 image270 image271image272

Т.о. напряжение опережает ток в этой цепи на угол image273, причем image274.

image275 image276

Мощность цепи:

image277

image278

image279

Т.о. мгновенная мощность состоит из двух составляющих: постоянной image280и переменной image281, среднее значение за период которой равно нулю.

image282

Мощность принимает как положительные так и отрицательный значения. Когда мощность положительна, то цепь потребляет энергию, а когда мощность отрицательна, то цепь возвращает запасенную энергию в цепь. Но т.к. потребляет энергию и активное сопротивление и индуктивное, а возвращает в цепь только индуктивность, то положительная будет значительно больше.

Треугольники напряжений, сопротивлений, мощностей

image283 image284 image285image276 Если стороны треугольника напряжений уменьшить или разделить на величину тока, то получим треугольник сопро-тивлений
image286 image287— полное сопротивление цепи image288
image289 — закон Ома для цепи с активным и индуктивным сопротивлением.

Если стороны треугольника напряжений уменьшить на ток, то получим треугольник мощностей.

image290 image291 image292— коэффициент мощности

image293

image294

image295— реактивная мощность

image296— активная мощность

Коэффициент мощности показывает, какая часть полной мощности потребляется безвозвратно.

Цепь переменного тока с активным сопротивлением, емкостью и индуктивностью

image297 image298 image299 image300 image301image302

image303

Допустим:

1. image304

image305 image306 image307 image308 image309image310

2. image311

image312 image313image314

Общий случай неразветвленной цепи

image315

image316

image317

image318

image319

image320

image321

image322

Резонанс напряжений

image323 image324 image325 image326image327

Результирующий ток image328резко увеличивается, т.к. индуктивное и емкостное сопротивления компенсируют друг друга.

Если параметры цепи подобрать так, что image329, то напряжения на емкости и индуктивности будут превышать напряжение на зажимах цепи в image330раз. Отношение image331называется добротностью цепи (контура).

image332 image333

Т.о. напряжение на емкости и индуктивности будут превышать напряжение сети в image334раз, что может привести к пробою диэлектрика в конденсаторе или сопротивлений изоляции индуктивности, поэтому явление резонанса напряжений в электрических цепях нежелательно, но в то же время в радиотехнике его используют (колебательные контуры приемника и передатчика).

Возникновение напряжений на L и С, превышающих напряжение на зажимах цепи объясняется способностью емкости и индуктивности накапливать электрическую энергию.

image335

Между емкостью и индуктивностью происходит непрерывный обмен энергией, который называется собственными колебаниями.

Частоту собственных колебаний можно определить при условии, что image336.

image337 image338image339 Т.о. резонанс можно получить, изменяя частоту тока питающей сети, или изменяя емкость или индуктивность. image340

Резонансные кривые

Зависимость параметров цепи от частоты характеризуется резонансными кривыми.

image341 image342

Разветвленные цепи переменного тока

Рассмотрим цепь с двумя параллельно соединенными катушками.

image343 image344image345

Для определения тока неразветвленной части цепи необходимо разложить токи image346и image347на активные и реактивные составляющие.

image348 image349 image350image351

Характеристики синусоидальных величин: мгновенное, амплитудное, действующее, среднее значение, период, частота (угловая и циклическая), фаза − мгновенные значения синусоидальных функций обозначают маленькими буквами: i, e, u. Они являются функциями времени.

Зависимость их от времени выражается соотношениями:

image352;

− угловая (циклическая) частота изменения тока:

image353, рад/c.

Для нашей сети w = 314 рад/c.

Действующее значение переменного тока.

Действующим значением I переменного тока называют такое значение постоянного I, который, протекая по сопротивлению R, за время, равное одному периоду Т изменения тока, выделяет в нем такое же количество теплоты Q, что и переменный ток i. Поясним определение на примере:

image354

image355.

После подстановки значения тока i и последующих преобразований получим, что действующее значение переменного тока равно:

image357.

Аналогичные соотношения могут быть получены также для напряжения и ЭДС:

image358 image359.

Большинство электроизмерительных приборов измеряют не мгновенные, а действующие значения токов и напряжений.

Учитывая, например, что действующее значение напряжения в нашей сети составляет 220 В, можно определить амплитудное значение фазного напряжения Um = UÖ2 = 307 В. Связь между действующим и амплитудным значениями напряжений важно учитывать, например, при проектировании устройств с применением полупроводниковых элементов.

Цепи переменного тока с резистором: напряжение, ток, мощность, векторная диаграмма

Возникновение в электрической цепи отрицательных значений мощности является вредным. Это означает, что в такие периоды времени приемник возвращает часть полученной электроэнергии обратно источнику; в результате уменьшается мощность, передаваемая от источника к приемнику. Очевидно, что чем больше угол сдвига фаз, тем больше время, в течение которого часть электроэнергии возвращается обратно к источнику, и тем больше возвращаемая обратно энергия и мощность.

Активная и реактивная мощности. Мгновенная мощность может быть представлена в виде суммы двух составляющих 1 и 2 (рис. 199,б). Составляющая 1 соответствует изменению мощности в цепи с активным сопротивлением (см. рис. 175,б).

Среднее ее значение, которое называют активной мощностью,

P = UI cos

Она представляет собой среднюю мощность, которая поступает от источника к электрическим установкам при переменном токе.

Составляющая 2 изменяется подобно изменению мощности в цепи с реактивным сопротивлением (индуктивным или емкостным, см. рис. 179, а и б). Среднее ее значение равно нулю, поэтому для оценки этой составляющей пользуются ее амплитудным значением, которое называют реактивной мощностью:

Q = UI sin

image361Рис. 199. Зависимость мгновенной мощности р (а) и ее составляющих (б) от угла t

image363

Рис. 200. Диаграмма, иллюстрирующая передачу электрической энергии между источником и приемником, содержащим активное и реактивное сопротивления, при отсутствии компенсатора (а) и при наличии его (б): 1 — источник; 2,3 — условные изображения активной и реактивной энергии; 4 — приемник; 5 — компенсатор непрерывно циркулирует по электрической цепи от источника электрической энергии 1 к приемнику 4 и обратно (см. рис. 200, а).

Читайте также:  слабая семья осенью что делать

Возникновение реактивной мощности в цепи переменного тока возможно только при включении в эту цепь накопителей энергии, таких как катушка индуктивности или конденсатор. В первом случае электрическая энергия, поступающая от источника, накапливается в электромагнитном поле катушки индуктивности, а затем отдается обратно; во втором случае она накапливается в электрическом поле конденсатора, а затем возвращается обратно к источнику. Постоянная циркуляция реактивной мощности от источника к приемникам загружает генераторы переменного тока и электрические сети реактивными токами, не создающими полезной работы, и тем самым не дает возможности использовать их по прямому назначению для выработки и передачи потребителям активной мощности. Поэтому в производственных условиях стараются по возможности уменьшить реактивную мощность, потребляемую электрическими установками.

Полная мощность. Источники электрической энергии переменного тока (генераторы и трансформаторы) рассчитаны на определенный номинальный ток Iном и определенное номинальное напряжение Uном, которые зависят от конструкции машины, размеров ее основных частей и пр. Увеличить значительно номинальный ток или номинальное напряжение нельзя, так как это может привести к недопустимому нагреву обмоток машины или пробою их изоляции. Поэтому каждый генератор или трансформатор может длительно отдавать без опасности аварии только вполне определенную мощность, равную произведению его номинального тока на номинальное напряжение. Произведение действующих значений тока и напряжения называется полной мощностью,

Следовательно, полная мощность представляет собой наибольшее значение активной мощности при заданных значениях тока и напряжения. Она характеризует ту наибольшую мощность, которую можно получить от источника переменного тока при условии, что между проходящим по нему током и напряжением отсутствует сдвиг фаз. Полную мощность измеряют в вольт-амперах (В*А) или киловольт-амперах (кВ*А).

Связь между мощностями Р, Q и S можно определить из векторной диаграммы напряжений (рис. 201, а). Если умножить на ток I все стороны треугольника ABC, то получим треугольник мощностей А’В’С’ (рис. 201,б), стороны которого равны Р, Q и S. Из треугольника мощностей имеем:

Из этого выражения следует, что при заданной полной мощности S (т. е. напряжении U и токе I) чем больше реактивная мощность Q, которая проходит через генератор переменного тока или трансформатор, тем меньше активная мощность Р, которую он может отдать приемнику. Иными словами, реактивная мощность не позволяет полностью использовать всю расчетную мощность источников переменного тока для выработки полезно используемой электрической энергии.

То же самое относится и к электрическим сетям. Ток I = (Ia 2 + Ip 2 ), который можно безопасно пропускать по данной электрической сети, определяется, главным образом, поперечным сечением ее проводов. Поэтому если часть Iр проходящего по сети тока (см. рис. 194,б) идет на создание реактивной мощности, то должен быть уменьшен активный ток Iа, обеспечивающий создание активной мощности, которую можно пропустить по данной сети.

image365

Рис. 201. Векторная диаграмма напряжений (а) и треугольник мощностей (б) для цепи переменного тока

Если задана активная мощность Р, то при увеличении реактивной мощности Q возрастут реактивный ток Iр и общий ток I, проходящий по проводам генераторов переменного тока, трансформаторов, электрических сетей и приемников электрической энергии. При этом увеличиваются и потери мощности Р = I 2 Rпp в активном сопротивлении Rпp этих проводов.

Таким образом, бесполезная циркуляция электрической энергии между источником переменного тока и приемником, обусловленная наличием в нем реактивных сопротивлений, требует также затраты определенного количества энергии, которая теряется в проводах всей электрической цепи.

Коэффициент мощности. Из формулы (75) следует, что активная мощность Р зависит не только от тока I и напряжения U, но и от величины cos, называемой коэффициентом мощности:

cos = P/(UI) = P/S = P/(P 2 + Q 2 )

Если приемник питается от источника при неизменном токе нагрузки, то повышение cos ведет к возрастанию активной мощности Р, используемой приемником. При cos = 1 реактивная мощность равна нулю, и вся мощность, отдаваемая источником, является активной. Поэтому на всех предприятиях и во всех отраслях народного хозяйства стремятся всемерно повышать коэффициент мощности и доводить его по возможности до единицы.

Значения коэффициента мощности электрических установок переменного тока различны. Электрические лампы обладают, главным образом, активным сопротивлением, поэтому при их включении сдвиг фаз между током и напряжением практически отсутствует. Следовательно, для осветительной нагрузки коэффициент мощности можно считать равным единице. Коэффициент мощности для двигателей переменного тока зависит от нагрузки. При номинальной расчетной нагрузке двигателя cos = 0,8-0,9, а у крупных двигателей даже выше. При недогрузке двигателей коэффициент мощности их резко снижается (при холостом ходе cos = 0,25-0,3).

Повышение коэффициента мощности. Cos повышают различными способами. Основной из них — включение параллельно приемникам электрической энергии специальных устройств, называемых компенсаторами. В качестве последних чаще всего используют батареи конденсаторов (статические компенсаторы), но могут быть применены также и синхронные электрические машины (вращающиеся компенсаторы).

Способ повышения cos с помощью статического компенсатора (рис. 202, а) называют компенсацией сдвига фаз, или компенсацией реактивной мощности. При отсутствии компенсатора от источника к приемнику, содержащему активное и индуктивное сопротивления, поступает ток i1 который отстает от напряжения и на некоторый угол сдвига фаз. При включении компенсатора Хс по нему проходит ток ic, опережающий напряжение и на 90°. Как видно из векторной диаграммы (рис. 202,б), при этом в цепи источника будет проходить ток i 2 a + (UL – Uc) 2 )

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы Ua + UL + UC. Разность UL – UC = Up называется реактивной составляющей напряжения.

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

В цепи, содержащей все три вида сопротивления, ток i и напряжение и оказываются сдвинутыми по фазе на некоторый угол ср (рис. 192, г).

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения Ua = IR; UL = lL и UC=I/(C), то будем иметь: U = ((IR) 2 + [IL-I/ (С) ] 2 ), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ( (R 2 + [L-1 / (С) ] 2 ) ) = U / Z (72)

где Z = (R 2 + [L-1 / (С) ] 2 ) = (R 2 + (XL – Xc) 2 )

Величину Z называют полным сопротивлением цепи, оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2 )

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Источник

Рейтинг
( Пока оценок нет )
Праздники по дням и их значения
Adblock
detector