что такое угловой коэффициент линейной функции

График линейной функции, его свойства и формулы

5fc102b3ac508517038997

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

5fc102e00abaf146317457

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Свойства линейной функции

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

5fc103e7523d6746646403

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

5fc1041404c63660323588

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

5fc104364e2ba795367447

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Читайте также:  свистит бачок унитаза при наборе воды что делать

5fc10473ad395894046333

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

Источник

Линейная функция, ее свойства и график

теория по математике 📈 функции

Функция, заданная формулой y=kx+b, где х – переменная, k и b – некоторые числа, называется линейной функцией. Переменную х называют независимой переменной, переменную у – зависимой переменной.

Графиком линейной функции является прямая. Для построения прямой достаточно взять два значения х, чтобы получить два значения у и, соответственно, две точки, через которые проходит единственная прямая.

Число k называется угловым коэффициентом прямой.

Свойства линейной функции

Рассмотрим на примерах расположение прямых в координатной плоскости в зависимости от значения чисел k и b.

Пример №1

Построить график функции у=2х – 1. Для того, чтобы удобнее было выполнять вычисления, построение и т.д. сделаем таблицу для значений х и у:

Для построения графика подбираем два значения х, одно из них желательно брать равное нулю, второе, например 3 (подбираем небольшие числа).

Теперь подставляем значения х в формулу и вычисляем соответствующие значения у:

Вписываем в таблицу значения у:

Теперь строим систему координат, отмечаем в ней точки с координатами А(0; –1) и В(3;5), проводим через эти две точки прямую.

image1 e1630756942334

Итак, по формуле мы видим, что угловой коэффициент — положительный, значит, график – возрастает, что мы и видим на нашем графике.

Пример №2.

Построить график функции у= –3х+4. Итак, делаем таблицу на два значения, например, возьмем 0 и 2.

По формуле видим, что угловой коэффициент отрицательный, значит, прямая будет убывать. Строим убывающую прямую в системе координат через две точки А(0;4) и В(2; –2).

image2 e1630757049858

Пример №3

Построить график функции у=4. Видим, что в данном случае число х=0, значит, прямая будет проходить через точку с координатой (0;4) параллельно оси х. На графике это выглядит следующим образом:

image3 e1630757117793

Построить график функции у=3х. Данная функция является частным случаем, когда прямая проходит через начало координат. Поэтому в данном случае можно взять устно одно значение х, например 2, тогда у получим равный 6. Таким образом, имеем две точки (2;6) и (0;0). Строим их в системе координат и проводим через них прямую, которая будет возрастать, так как угловой коэффициент равен 3, т.е. положительный.

Читайте также:  кольцо денстагмера скайрим нет на месте что делать

image4 e1630757167317

На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.

%D0%9E%D0%93%D0%AD %D0%B7%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5 10 5 1

ассмотрим коэффициенты под №3. Если k 90 0 ) угол с положит.направлением оси абсцисс (Ох). Если b 0. Это соответствует оставшимся графикам А и Б, т.к. они оба наклонены к положительно направлению оси Оx под острым углом ( 0 ). Следовательно, выбор соответствия должен быть выполнен по коэффициенту b.

В 1-й паре коэффициентов b 0, что соответствует графику А, который пересекает ось Оу выше начала координат. Это подтверждает, что и оставшаяся пара А–2 тоже верна.

pазбирался: Даниил Романович | обсудить разбор | оценить

Установите соответствие между функциями и их графиками.

6 3

Функция представляет собой линейную зависимость, а именно уравнение первого порядка вида:

График данной функции зависит от k и b.

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Линейная функция ее свойства и график. Угловой коэффициент линейной функции

Линейная функция

Линейная функция – это функция вида:

здесь k и b являются действительными числами.

Свойства линейной функции

Линейная функция имеет следующие свойства:

Угловой коэффициент линейной функции

Коэффициент k в формуле линейной функции называется угловым коэффициентом.

Угловой коэффициент определяет угол между графиком линейной функции и положительным направлением оси абсцисс.

График линейной функции

График линейной функции есть прямая. Вот график линейной функции y = 2x + 1 Lineynaya

здесь угловой коэффициент больше нуля, угол прямой линии y = 2x + 1 с положительным направлением оси x – острый.

Как изменяется график линейной функции в зависимости от числа b в формуле линейной функции y = kx + b? Если b увеличивать, график смещается вверх, если число b уменьшать, то график y = kx + b смещается вниз.

График линейной функции y = kx + b построить вы можете сами прямо сейчас с помощью построителя графиков. Выберете в нём вид функции «Линейная: y = k * x + b» и нажмите кнопку «Построить график». Проведите эксперименты: устанавливайте угловые коэффициенты больше и меньше нуля, меняйте значения числа b и посмотрите, как будет изменяться график линейной функции.

Источник

Уравнение прямой с угловым коэффициентом: теория, примеры, решение задач

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси О х с их угловым коэффициентом. Допустим, что задана декартова система координат О х на плоскости.

image001 1f7UG7P

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

image005 K3bsQpO

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Уравнение с угловым коэффициентом

Ответ: М 1 принадлежит прямой, а М 2 нет.

Читайте также:  что такое температура кипения газов

image034

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Решение

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y = k · x + b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

Решим задачу обратную данной.

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

Для решения таких заданий следует приводит параметрические уравнения прямой вида x = x 1 + a x · λ y = y 1 + a y · λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

Источник

Взаимное расположение графиков линейных функций

Урок 17. Алгебра 7 класс

20210413 vu tg sbscrb2

17

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

20210706 unblock slide1

20210706 unblock slide2

20210706 unblock slide3

Конспект урока «Взаимное расположение графиков линейных функций»

· рассмотреть угловой коэффициент линейной функции;

· выяснить, как зависит взаимное расположение графиков функций от значений угловых коэффициентов.

На прошлом уроке мы познакомились с линейной функцией:

image001

На этом уроке мы выясним, как зависит расположение графиков линейных функции от значений коэффициентов k и b.

Рассмотрим функции и построим их графики:

image002

У рассматриваемых функций коэффициенты k равны, а коэффициенты b не равны.

Все прямые по построению параллельны, а также они наклонены к оси икс под одинаковым углом. Этот угол зависит от значения числа k, которое называют угловым коэффициентом графика линейной функции.

Давайте построим графики функций:

image003

У данных функций угловые коэффициенты различны. При этом у первой функции коэффициент k отрицателен и график этой функции образует с осью икс тупой угол. А у второй функции угловой коэффициент положителен и график образует с осью икс острый угол.

image004

Обратите внимание, что в отличие от предыдущего примера, где угловые коэффициенты равны и прямые параллельны, здесь графики функций пересекаются.

Таким образом, можем сделать вывод.

Если угловые коэффициенты прямых, являющихся графиками двух линейных функций, различны, то эти прямые пересекаются, а если угловые коэффициенты одинаковы, то прямые параллельны.

В системе координат, в которой мы с вами строили графики функций, в качестве координатных осей берутся прямые, которые перпендикулярны друг к другу, поэтому её называют прямоугольной.

Такая система координат была введена знаменитым французским учёным Рене Декартом. И в его честь её так же называют декартовой.

Источник

Праздники по дням и их значения
Adblock
detector