что такое углеводороды нефти

Углеводороды нефти: компоненты, состав, структура

Углеводороды – важнейшая составная часть любой нефти. Концентрация природных углеводородов в нефти разного вида не одинакова: от 100 (газовый конденсат) до 30 %. В среднем углеводороды составляют 70 % массы этого топлива.

Углеводороды в составе нефти

В составе нефтей определено около 700 углеводородов своеобразного строения. Все они разнообразны по составу и строению, но при этом хранят информацию о составе и строении веществ, составляющих основу липидов древних бактерий, водорослей и высших растений.

Углеводородный состав нефти включает:

Алканы (алифатические предельные углеводороды)

Алканы – важнейшие и хорошо изученные углеводороды любой нефти. В состав нефти входят углеводороды алканы от С1 до С100. Их количество колеблется в пределах от 20 до 60 % и зависит от типа нефти. По мере возрастания молекулярной массы фракции, концентрация алканов снижается во всех типах.

Если циклические углеводороды разного строения встречаются в нефти одинаково часто, то среди алканов обычно преобладают структуры определенного строения. Причем строение, как правило, не зависит от молекулярного веса. Это значит, что в разных типах нефти присутствуют определенные гомологические ряды алканов: алканы нормального строения, монометилзамещенные с разным положением метильной группы, реже – ди- и триметилзамещенные алканы, а также тетраметилалканы изопреноидного типа. Алканы характерного строения составляют почти 90 % от всей массы алканов нефти. Этот факт позволяет хорошо изучить алканы в различных, в том числе высококипящих, фракциях нефти.

Алканы разных фракций

При температуре от 50 до 150 °С выделяется фракция I, в которую входят алканы с количеством углеродных атомов от 5 до 11. Алканы имеют изомеры:

Поэтому фракция I теоретически может включать около 300 углеводородов. Конечно, не все изомеры присутствуют в нефти, однако число их велико.

На рисунке представлена хроматограмма алканов С5 – С11 нефти сургутского месторождения, на которой каждый пик соответствует определенному веществу.

f8884351ddf54737ec864a85dd196c9d

При температуре 200-430 °С выделяются алканы фракции II состава С12 – С27. На рисунке представлена хроматограмма алканов фракции II. На хроматограмме показаны пики нормальных и монометилзамещенных алканов. Цифры указывают на положение заместителей.

4d7bd98d73d829ca50391274c7a58f78

При температуре >430°С выделяются алканы фракции III состава С28 – С40.

Изопреноидные алканы

К изопреноидным алканам относят разветвленные углеводороды с правильным чередованием метильных групп. Например, 2,6,10,14-тетраметилпентадекан или 2,6,10-триметилгексадекан. Изопреноидные алканы и алканы с неразветвленной цепью составляют преобладающую массу биологического исходного материала нефти. Конечно, вариантов изопреноидных углеводородов гораздо больше.

130b186ae9744cd435bb991f49d1f85b

Для изопреноидов характерна гомологичность и неравновесность, то есть для разных нефтей характерен свой набор этих соединений. Гомологичность является следствием разрушения более высокомолекулярных источников. В изопреноидных алканах можно выявить «провалы» в концентрациях каких-либо гомологов. Это следствие невозможности разрыва их цепи (образования этого гомолога) в том месте, где находятся метильные заместители. Эту особенность используют для определения источников образования изопреноидов.

Циклоалканы (нафтены)

Нафтены – предельные циклические углеводороды нефти. Во многих нефтях они преобладают над другими классами углеводородов. Их содержание может колебаться от 25 до 75 %. Присутствуют во всех фракциях. По мере утяжеления фракции, их содержание растет. Различают нафтены количеством циклов в молекуле. Нафтены делят на две группы: моно- и полициклические. Моноциклические бывают пяти- и шестичленные. Полициклические могут включать и пяти- и шестичленные кольца.

Низкокипящие фракции содержат преимущественно алкилпроизводные циклогексана и циклопентана, причем в бензиновых фракциях преобладают метильные производные.

Полициклические нафтены содержатся в основном во фракциях нефти, выкипающие при температуре более 300 °С, а содержание их во фракциях 400-550 °С достигает 70-80 %.

97f3c93bd8db0ee1a7915a05f1c734d1

Ароматические углеводороды (арены)

Их делят на две группы:

Техническое значение углеводородного состава нефти

Состав веществ существенно влияет на показатели качества нефти.

2. Нафтены (циклопарафины) наряду с изопарафинами положительно влияют на качество дизельного топлива и смазочных масел. Их высокое содержание в тяжелой бензиновой фракции приводит к высокому выходу и высокому октановому числу продуктов.

3. Ароматические углеводороды ухудшают экологические свойства топлива, но обладают высоким октановым числом. Поэтому при переработке нефти другие группы углеводородов превращают в ароматические, но количество их, в первую очередь бензола, в топливе строго регламентируется.

Методы исследования углеводородного состава нефти

Для технических целей достаточно установление состава нефти по содержанию в ней отдельных классов углеводородов. Фракционный состав нефти важен для выбора направления переработки нефти.

С целью определения группового состава нефти применяют различные методы:

Для научных целей важно определить точно, какие углеводороды в нефти содержатся или преобладают.

Для выявления отдельных молекул углеводородов используют газожидкостную хроматографию с использованием капиллярных колонок и установления температуры, хромато-масспектрометрию с компьютерной обработкой и построением хроматограмм по отдельным характеристическим фрагментным ионам (масс-фрагментография или масс-хроматография). Используются также спектры ЯМР на ядрах 13С.

Современные схемы анализа состава углеводородов нефти включают предварительное разделение на две или три фракции с разными температурами кипения. После этого каждую из фракций разделяют на насыщенные (парафиново-нафтеновые) и ароматические углеводороды с помощью жидкостной хроматографии на силикагеле. Далее ароматические углеводороды следует разделить на моно-, би- и полиароматические с помощью жидкостной хроматографии с использованием оксида алюминия.

38053d51a0d3b933ffde73a4d048bbcc

Источники углеводородов

Природные источники углеводородов нефти и газа – биоорганические молекулы разных соединений, в основном их липидные компоненты. Ими могут быть:

Липидные компоненты растений по химическому составу очень схожи, однако, определенные вариации молекул позволяют определить преимущественное участие тех или иных веществ в образовании данной нефти.

Все липиды растений разделяют на два класса:

Существуют соединения, состоящие из элементов, принадлежащих к обоим классам, например, воск. Молекулы воска являются сложными эфирами высших насыщенных или непредельных жирных кислот и циклических изопреноидных спиртов – стеролов.

Типичными представителями липидных природных источников углеводородов нефти являются следующие соединения:

Реликтовые и преобразованные углеводороды

Все углеводороды нефти делят на две группы:

Реликтовые углеводороды, входящие в состав нефти, подразделяются на две группы:

Реликтов изопреноидного строения значительно больше, чем неизопреноидного.

Выделено свыше 500 реликтовых углеводородов нефти, и их число увеличивается с каждым годом.

Источник

Углеводороды

Углеводороды (hydrocarbon) – это органические соединения, состоящие из углерода и водорода.
Углеводороды служат фундаментальной основой органической химии: молекулы любых других органических соединений рассматривают как их производные.

Соотношения между углеродом и водородом в углеводородах колеблются в широких пределах (10-90 %).
Соединения углеводородов отличаются друг от друга количеством атомов углерода и водорода, строением углеродного скелета и типом связей между атомами.

Читайте также:  с пептид что это такое у женщин норма таблица расшифровка

Большинство углеводородов в природе встречаются в сырой нефти.
Кроме того, основными источниками углеводородов являются природный газ, сланцевый газ, попутный нефтяной газ, горючие сланцы, уголь, торф.

Алкены (олефины) относятся к непредельным углеводородам общей формулы CnH2n.
В молекуле алкена кроме σ-связей содержится одна π-связь.
Первый представитель гомологического ряда – этилен С2Н4, поэтому алкены называют также «этиленовыми углеводородами».

Диеновые углеводороды содержат в молекуле 2 двойные связи.
Общая формула СnН2n-2.
Первым представителем ряда является бутадиен СН2=СН–СН=СН2.

Алкинами называются углеводороды общей формулы CnH2n-2, молекулы которых содержат тройную связь.
Первый представитель гомологического ряда – ацетилен С2Н2, поэтому алкины называют также «ацетиленовыми углеводородами».

Молекулы циклоалканов содержат циклы разной величины, атомы углерода в которых связаны между собой только σ-связью.
Общая формула СnH2n.

Циклоалкены содержат одну двойную связь и имеют общую формулу СnН2n-2.
Углеводороды, имеющие кратные связи, легко вступают в реакции присоединения по месту разрыва π-связей.

Ароматические углеводороды (арены) – углеводороды общей формулы CnH2n-6.
Первые представители ароматических углеводородов были выделены из природных источников и обладали своеобразным запахом, поэтому и получили название «ароматические».
Важнейшим представителем ароматических углеводородов является бензол С6Н6.
В молекуле бензола 6 атомов углерода, соединяясь σ-связями, образуют правильный шестиугольник.
В результате сопряжения 6 свободных р-электронов образуется единое π-электронное облако над и под плоскостью кольца.

Природные источники углеводородов

Каменный уголь – плотная осадочная порода черного, иногда сepo-черного цвета, дающая на фарфоровой пластинке черную черту.
Каменный уголь представляет собой продукт глубокого разложения остатков растений, погибших миллионы лет назад (древовидных папоротников, хвощей и плаунов, а также первых голосеменных растений).
В органическом веществе угля содержится 75-92 % углерода, 2,5-5,7 % водорода, 1,5-15 % кислорода.
Международное название элемента углерода происходит от лат. carbō («уголь»).

Нефть – смесь углеводородов от светло-бурого до черного цвета с характерным запахом.
Нефть намного легче воды и в ней не растворяется.
В зависимости от происхождения нефть может содержать большое количество алифатических, циклических или ароматических углеводородов.
Так, например, бакинская нефть богата циклоалканами и содержит сравнительно небольшое количество алифатических предельных углеводородов.
Значительно больше алканов в грозненской, ферганской, а также нефти штата Пенсильвания (США).
Пермская нефть содержит ароматические углеводороды.
В небольших количествах в состав нефти могут входить также кислородсодержащие соединения, как, например, альдегиды, кетоны, эфиры и карбоновые кислоты.

Источник

Углеводороды нефти

Нефть — это важное полезное ископаемое, которое используется и как топливо, и как промышленное сырье. Возьмите в руки смартфон, посмотрите в окно, посмотрите на стены, на мебель, на одежду — все это производные нефти. Лаки, краски, удобрения, парфюмерия, вся пластмасса, даже асфальт — это все производные нефти. Но мне бы хотелось, чтобы сейчас мы поговорили о нефти не как о топливе и промышленном сырье, а как об источнике фундаментальных знаний о жизни нашей планеты, чтобы мы изучили ее состав на молекулярном уровне.

Рекомендуем по этой теме:

poshibaeva1

Микробиолог Александра Пошибаева о поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов

Как известно, нефть и газ залегают на различных глубинах, иногда они выходят на поверхность земли. Нефть и газ находятся не в озерах, не в огромных пустотах под землей, а в породах-коллекторах, которые имеют большую пористость, чтобы туда могло войти много нефти, и проницаемость, чтобы эта нефть могла оттуда выйти. В качестве аналога можно представить обычную губку, наполненную водой. Чтобы нефть сохранилась в породах, необходимо наличие вышезалегающих непроницаемых слоев, которые называются породами-покрышками. Породами-коллекторами могут служить известняки, песчаники, а породами-покрышками — соляные и глинистые толщи.

Считается, что нефть и газ образовались в нефтегазоматеринских толщах, то есть таких породах, где находится огромное количество органического вещества. Откуда взялось это органическое вещество? Многие горные породы, а именно осадочные породы, образовались в результате осадков, например, морского ила или глубоководной глины. В этих осадках происходило захоронение колоссальных количеств биомассы. Трудно представить, какое количество органического вещества накапливается и осаждается в Мировом океане каждый день. Можно только предположить, сколько осадилось его за всю геологическую летопись нашей планеты.

При определенных условиях в нефтегазоматеринских толщах могут образоваться нефть и газ. По мельчайшим трещинами, по пустотам они могут мигрировать в вышележащие слои пород-коллекторов, причем в определенных геологических структурах земной коры могут образоваться колоссальные скопления нефти и газа. Сохранность таких скоплений обеспечивается наличием вышезалегающих непроницаемых пород-покрышек. Нефти залегают в древних породах. Например, возраст самой древней породы, в которой была найдена нефть, более одного миллиарда лет. Есть и молодые нефти, залегающие в породах, которым сотни и десятки миллионов лет.

Нефти бывают разные. У одних нет легкой фракции, например у бензина и керосина. Бывают тяжелые нефти — это остаточные нефти, из которых мигрировали легкие углеводороды или биодеградированные нефти. Исследование углеводородов нефти на молекулярном уровне помогает решать как теоретические вопросы, связанные с происхождением нефти, так и практические вопросы, связанные с поиском и разведкой новых нефтяных месторождений и промышленным освоением уже разрабатываемых месторождений. Всеми этими вопросами занимается органическая геохимия.

Эта дисциплина возникла в 1960-е годы. Ее целью является изучение на молекулярном уровне особенностей состава и строения органических молекул земной коры, морей и океанов. Причем если биогеохимия — это геохимия живого вещества, то органическая геохимия занимается изучением мертвого органического вещества, которое захоранивалось в осадочных породах. Исследуются как современные соединения, так и соединения, которые были накоплены сотни миллионов лет тому назад. В нашей стране существует несколько крупных школ. Это школа академика Алексея Эмильевича Конторовича в Новосибирске и школа профессора Александра Александровича Петрова в Москве, а сейчас его ученика профессора Гурама Николаевича Гордадзе.

Из каких соединений состоит нефть? В основном это углеводороды, а также смолы и асфальтены. Подробно остановимся на наиболее изученном классе углеводородов — это углеводороды нефти. Дело в том, что все нефти мира от самых древних до самых молодых содержат один и тот же набор углеводородов. Это насыщенные углеводороды, то есть алканы, циклоалканы и углеводороды алмазоподобного строения, а также ароматические углеводороды. Причем кроме углеводородов алмазоподобного строения превалируют углеводороды-биомаркеры — соединения, сохранившие черты строения, свойственные исходным биоорганическим молекулам. Например, нормальные алканы образовались из нормальных и насыщенных жирных кислот. А изо- и антеизоалканы образовались из изо- и антеизокислот за счет процесса декарбоксилирования. То есть происходит только декарбоксилирование, то есть отщепление COH-группы, а сам углеводородный фрагмент остается неизменным.

Читайте также:  когда ставится запятая после так в начале предложения

Рекомендуем по этой теме:

miniatyurka 4

Три вопроса про нефть

Эксперты исследовательских институтов Канады, Австралии и Великобритании отвечают на главные вопросы о нефти

Изопренаны — это углеводороды, содержащие изопреновые кирпичики 2-метилбуто-1,3-диен. Считается, что они образовались из фитола — спирта, являющегося боковой цепочкой хлорофилла, который находится у растений. Интересно отметить, что только в самых древних нефтях мира обнаружены 12 и 13 метилалканы. Об их происхождении пока известно лишь то, что алканы такого строения в нефтях более молодого возраста не обнаружены. Помимо этого, в нефтях есть и циклические углеводороды-биомаркеры, моноциклы, циклопентаны, циклогексаны, бициклы, декалины, гидринданы, трициклы хелантаны, тетрациклы стераны и пентациклы терпаны. А также углеводороды алмазоподобного строения: адамантаны, диамантаны, триамантаны, тетрамантаны.

В нефтях континентального генезиса наблюдается превалирование углеводородов ряда циклогексана стерана состава 29 C и присутствует терпан или анан. А в нефтях морского генезиса превалируют углеводороды ряда циклопентана стерана состава 27 C, а терпан или анан вовсе отсутствуют. Что касается углеводородов алмазоподобного строения, для них характерно то, что они выдерживают очень высокие температуры и не подвергаются биодеградации. В то время как на ранних стадиях биодеградации бактериями сначала съедаются нормальные алканы, потом изоалканы, затем циклоалканы и даже ароматические углеводороды.

Таким образом, изучая углеводородный состав нефтей и органического вещества пород на молекулярном уровне, мы можем сделать следующие важные выводы. Какое исходное органическое вещество было для данной нефти — морское или континентальное. В каких литолого-фациальных условиях эта нефть образовалась. Иными словами, в каких породах нефть образовалась — глинистых или карбонатных. Например, мы можем сказать о том, какова степень солености вод в конкретном бассейне осадконакопления, окислительно-восстановительные условия. Мы можем определить степень преобразованности нефти, то есть зрелости.

В исходном органическом веществе для нефти находятся термодинамически слабоустойчивые углеводороды. В процессе созревания органического вещества эти соединения преобразуются в более термодинамически устойчивые углеводороды. То есть мы можем проследить эволюцию органического вещества в конкретном бассейне осадконакопления. Мы можем сказать о биодеградации нефти. И наконец, изучая углеводородный состав нефтей на молекулярном уровне, мы можем сказать о геологическом возрасте данной нефти. А под геологическим возрастом мы подразумеваем возраст тех нефтематеринских толщ, которые эту нефть генерировали.

Все перечисленные выводы имеют большое значение в нефтегазопоисковой, нефтегазопромысловой геохимии. А какое будущее у исследований углеводородов на молекулярном уровне? Это, безусловно, проведение междисциплинарных комплексных исследований совместно с геологами, химиками, микробиологами, палеонтологами. Важно изучать не только нефти, но и рассеянное органическое вещество пород.

Рекомендуем по этой теме:

spasennyih

Директор Центра добычи углеводородов Сколтеха Михаил Спасенных о нетрадиционных источниках нефти и методах их разработки

Мы исследовали нефти и органическое вещество пород в нижнекембрийских отложениях на юге Восточной Сибири. Промышленная значимость этих нефтеносных толщ очень велика. До недавнего времени считалось, что источниками этой нефти являются более древние толщи. Предполагалось, что эта нефть мигрировала в вышележащие слои. Однако в результате комплексных исследований мы показали, что это не так, а именно: порода, которая содержит в себе нефть, то есть порода-коллектор, является одновременно нефтегазоматеринской. То, что раньше геологи считали просто природным резервуаром для нефти, то есть породой-коллектором, может являться той породой, в которой образуется эта нефть. Учитывая, что породы такого типа широко распространены в этом регионе, обнаружение новых месторождений в этих отложениях возрастает в несколько раз.

Таким образом, изучение углеводородного состава нефтей и рассеянного органического вещества имеет огромное значение при поисках, разведке и разработке нефтяных месторождений. Помимо этого, изучение углеводородного состава нефтей помогает нам ответить на вопросы, связанные с эволюцией жизни на нашей планете.

Источник

Нефть

Нефть – горючая, маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов

Химический состав нефти

В нефти встречаются следующие группы углеводородов:

Основные характеристики нефти: вес, сладость ( сернистость), плотность и вязкость.

Сладость

Плотность

Вязкость

Пластовые условия

природная жидкая смесь разнообразных углеводородов с небольшим количеством других органических соединений; ценное полезное ископаемое, залегающее часто вместе с газообразными углеводородами (попутные газы, природный газ).

Соединения нефти

Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды.

Парафиновые углеводороды

Парафиновые углеводороды (общей формулы CnH2n + 2) относительно стабильны и неспособны к химическим взаимодействиям.
Соответствующие олефины (CnH2n) и ацетилены (CnH2n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти.
Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах.

Циклопарафины

Ароматические углеводороды

Сернистые соединения.

Кислородные соединения.

Азотсодержащие соединения.

Зола содержит кремнезем, алюминий, известь, оксиды железа и марганца. Используя такие методы, как экстракция растворителем, иногда выгодно получать соединения ванадия из сажи, образующейся при сгорании ванадийсодержащей нефти.
Однако, как правило, использование нефтяной золы ныне весьма ограничено.

Источник

Соединения в составе сырой нефти

Природная маслянистая горючая жидкость известная как нефть имеет сложный и разнообразный состав определяющий её качество. Состав сырой нефти представляющий собой жидкость находящуюся в недрах Земли включает углеводороды, органические соединения и небольшое количества металла.

lazy placeholder

Компоненты состава сырой нефти

Хотя углеводороды обычно являются основным компонентом состава сырой нефти, их количество может варьироваться от 50% до 97% в зависимости от типа горючей жидкости и способа ее добычи. Органические соединения, такие как азот, кислород и сера, обычно составляют от 6 до 10% сырой нефти, в то время как металлы, такие как медь, мышьяк, никель, ванадий и железо, составляют менее 1% от общего состава.

Нефть состоит из следующих основных элементов:

Неорганические соли хлорида магния, хлоридов натрия и других минеральных веществ также сопровождаются с сырой нефтью из скважины либо из-за воды пласта или воды и химических веществ, закачиваемых во время бурения и добычи.

Читайте также:  скрининг для беременных что это такое и как его делают

Типы углеводородов в сырой нефти

Существуют три основных типа углеводородов в сырой нефти: парафины или алканы (15-60%), нафтены или циклоалканы (30-60%), ароматические или арены (3-30%).

Парафиновые углеводороды

Общая молекулярная формула (CnH2n+2), С-углерод, H-водород, где n-число атомов углерода в этом соединении. Гомологичные ряды этих углеводородов называются алканами. Алканы относительно неактивны по сравнению с ароматическими веществами и олефинами. При комнатной температуре алканы не подвергаются воздействию концентрированной дымящей серной кислоты, концентрированных щелочей или мощных окислителей, таких как хромовая кислота. Алканы проводят реакции замещения медленно с хлором в солнечном свете и с бромом в присутствии катализатора.

Парафины выпускаются как обычные, так и изопарафины. Нормальные парафины представляют собой соединения с прямой цепью, а изопарафины — разветвленные соединения.

Изопарафины более реактивны, чем обычные парафины, и желательны в моторном топливе.

Нормальные парафины могут быть преобразованы в изопарафины термическим или химическим путем. Это называется реакцией изомеризации.

Олефины эта серия известна как алкены: это ненасыщенные углеводороды, что означает наличие двойной связи между двумя атомами углерода в формуле. Родовая формула (CnH2n), и самый низкий член этого гомологичного ряда этилен, C2H4. Алкены бывают как жидкость так и газ: этилен, бутен, изобутен. Они обладают высокой реакционной способностью и могут сами реагировать на моноолефины.

Олефины не присутствуют в сырой нефти, но они образуются путем термического и каталитического разложения или дегидрирования обычных парафинов.

Олефины обычно нежелательны в готовых продуктах, потому что двойные связи реакционноспособны, а соединения легче окисляются и полимеризуются с образованием смол и лаков, поэтому их можно удалить абсорбцией в серной кислоте.

Нафтены или циклопарафины

Нафтены или циклопарафины: циклические насыщенные углеводороды с общей формулой, как олефины,(CnH2n), также известные как циклоалканы.

Поскольку они насыщены, они относительно неактивны, как парафины. Нафтены являются желательными соединениями для производства ароматических веществ и высококачественных базовых запасов смазочных масел.

Ароматические соединения

Не имеют отношения к запаху и является понятием, характеризующим структурные молекулы. Термин устоялся из-за приятного запаха этих веществ.

Ароматические соединения часто называемые бензолами, химически очень активны по сравнению с другими группы углеводородов. Их общая формула (CnH2n-6) при n ≥ 6.

Эти углеводороды подвергаются воздействию кислорода с образованием органических кислот.

Ароматические вещества также могут быть получены дегидрированием нафтенов в присутствии платинового катализатора.

Низшие ароматические соединения, такие как бензол, толуол и ксилолы, являются хорошими растворителями и инициаторами для многих нефтехимических продуктов.

Ароматические вещества из нефтепродуктов могут быть отделены экстракцией растворителями, такими как фенол, фурфурол и диэтиленгликоль.

Виды углеводородов в сырой нефти
Тип углеводородов Отличительная черта Основные углеводороды Особенности
Парафины (алканы) Прямая углеродная цепь Метан, этан, пропан, бутан, пентан, гексан Температура кипения увеличивается по мере того, как число атомов углерода увеличивается. С количеством углерода 25-40 % парафины становится восковыми.
Изопарафины (изоалканы) Разветвленная углеродная цепь. Изобутан, изопентан, неопентан, изооктан Число возможных изомеров возрастает в геометрической прогрессии по мере увеличения количества углерода атомы увеличиваются.
Олефины (алкены) Одна пара углеродистых атомов Этилен, пропилен, этен, пропен, бутен, пентен, гексен Общая формула CnH2n. Олефины не присутствуют в сырой нефти, но образуются во время процесса.
Нежелательно в готовом продукте из-за их высокой реактивности. Низкая молекулярная масса олефинов имеет хорошие антидетонационные свойства.
Циклоалканы

(полиметиленовые углеводороды)

Насыщенные углеводороды

содержат замкнутый углеродный цикл.

Циклопентан, метил-циклопентан, диметилциклопентан циклогексан, 1,2-диметилциклогексан Общая формула CnH2n, имеющая циклическое строение. Средняя сырая нефть содержит около 50 % нафтенов. Нафтены-скромно хорошие компоненты бензина.
Ароматические или арены 6 атомов углерода в кольце с тремя вокруг Бензол, толуол, ксилол, этилбензол, кумол, нафталин Ароматические вещества нежелательны в керосине и смазочном масле. Бензол является канцерогеном, следовательно, нежелательная часть бензина.

Неуглеводороды или гетероатомные соединения

Общие гетероатомы в углеводородах — это атомы серы, кислорода, азота и металлов.

Соединения серы

Соединения серы присутствуют в сырой нефти в виде меркаптанов органических веществ, сернистые аналоги спиртов, имеющие общую формулу RSH, где R — углеводородный радикал Примерами циклических соединений серы являются тиофены и бензотиофены.

Газ сероводород

Газ сероводород (H2S) связан с сырой нефтью в растворенном виде и выделяется при нагревании. H2S вызывает коррозию при высоких температурах и в присутствии влаги.

Сырая нефть, содержащая большое количество H2S, называется кислой сырой нефтью. Сера, присутствующая в нефтяных топливных продуктах, также образует различные оксиды серы (SOx) при горении, которые являются сильными загрязнителями окружающей среды. H2S может быть удален из газов путем абсорбции в растворе с производными аммиака.

В легких дистиллятах сера может присутствовать в виде H2S, меркаптанов и тиофенов, но в более тяжелых фракциях сырой нефти 80-90% серы обычно присутствует в сложной кольцевой структуре углеводородов. В этой комбинации атом серы стабилен и не реагирует. В результате сера из более тяжелой нефти не может быть удалена без разрушительной реакции, такой как тяжелые термические или каталитические реакции.

В настоящее время сера извлекается при рафинировании и продается в виде продукта. Сера также оказывает отравляющее действие на различные катализаторы.

Соединения азота

Состав сырой нефти может включать соединения азота которые обычно встречаются в более тяжелых видах.

Соединения азота ответственны за цвет и цветовую нестабильность. В общем, чем более асфальтирована нефть, тем выше в ней содержание азота. Азот в нефтяных топливах вызывает образование оксидов азота (NOx), которые также являются сильными загрязнителями атмосферы. Азот может быть удален из нефтепродукты методом каталитического гидрирования.

Соединения азота более стабильны, чем соединения серы, и поэтому их труднее удалить, даже если они присутствуют в очень низких концентрациях.

Кислородные соединения

Сырая нефть может содержать кислородсодержащие соединения, такие как нафтеновые кислоты, фенолы и крезолы, которые ответственны за коррозионную деятельность. Кислород также действует на многие катализаторы. Кислород может быть удален каталитическим гидрированием.

Избыток кислородных соединений может даже привести к взрыву.

Металлы

Металлические соединения ванадия, никеля, свинца, мышьяка и др., также содержатся в сырой нефти.

Ванадий и никель встречаются в виде металлоорганических соединений в основном в более тяжелых фракциях сырой нефти, где атомы металлов распределены внутри соединения в сложной форме, называемой порфиринами.

Нефтяное топливо, содержащее эти металлические соединения, может повреждать горелки, трубопроводы и стенки камер сгорания.

Источник

Праздники по дням и их значения
Adblock
detector