что такое удаление в гравиметрическом методе

Что такое удаление в гравиметрическом методе

5.3. ОБЩАЯ ХАРАКТЕРИСТИКА МЕТОДА

Гравиметрический анализ основан на определении массы вещества, выделяемого в химически чистом состоянии, или вещества, в которое переводится определяемое, с точно известным постоянным составом.

Разделение компонентов сложной смеси возможно в том случае, если один из компонентов выделить в виде соединения, образующего определенную поверхность раздела, т.е. методом фазового разделения.

Фазой назывется часть системы, отделенная от других ее частей поверхностью раздела.

Внутри каждой фазы вещество является физически и химически однородным. В гравиметрическом (весовом) анализе и при разделении элементов анализируемое вещество обычно переводят в раствор. В растворе выполняют те или иные реакции, в результате которых образуется новая фаза, которую отделяют от раствора. В соответствии с тремя видами фаз: жидкой, газообразной и твердой, можно рассматривать три группы методов весового анализа:

1 Выделение одного или нескольких компонентов в жидкую фазу, не смешивающуюся с исходным растворителем;

2 Выделение компонентов в виде летучих соединений (газов);

3 Образование твердой фазы в равновесии с раствором.

Наиболее известным примером является экстрагирование иода, образующегося при окислении иодид-ионов, хлороформом (СН Cl 3 ), четыреххлористым углеродом (С Cl 4 ) или бензолом ( C 6 H 6 ). Иод, растворяющийся в этих веществах гораздо лучше, чем в воде, легко извлекается. Экстрагирование применяется обычно только для отделения какого-либо вещества, после чего определение выполняется каким-либо другим методом.

Соединение, в виде которого определяемый компонент осаждается из раствора, называется формой осаждения.

После фильтрования и промывания осадок высушивают и прокаливают до постоянной массы, а затем взвешивают.

Соединение, в виде которого производят взвешивание, называют гравиметрической формой.

При высушивании и прокаливании осадков могут происходить химические процессы, например

Таким образом, форма осаждения и гравиметрическая форма могут различаться по составу, а могут совпадать (например, в случае AgCl ).

Гравиметрическое определение состоит из нескольких этапов. После отбора и растворения пробы, содержащей анализируемое вещество, выполняются следующие операции.

Источник

Классификация Гравиметрический Аналиты Твердые
вещества Жидкости Другие техники Связанный Осаждение
титрования

СОДЕРЖАНИЕ

Способ осаждения

Образование оксалата кальция:

Осадок собирают, сушат и поджигают до высокой температуры (красный), которая полностью превращает его в оксид кальция.

В результате реакции образуется чистый оксид кальция.

Чистый осадок охлаждают, затем измеряют взвешиванием, и разница в весе до и после показывает потерянную массу анализируемого вещества, в данном случае оксида кальция. Затем это число можно использовать для расчета его количества или процентной концентрации в исходной смеси.

Типы методов улетучивания

В способах улетучивания удаление аналита включает разделение путем нагревания или химического разложения летучей пробы при подходящей температуре. Другими словами, для осаждения летучих веществ используется тепловая или химическая энергия. Например, содержание воды в соединении можно определить путем испарения воды с использованием тепловой энергии (тепла). При наличии кислорода также можно использовать тепло для сжигания, чтобы изолировать подозрительные частицы и получить желаемые результаты.

Сульфат кальция (CaSO 4 ) в трубке избирательно удерживает углекислый газ при нагревании и, таким образом, удаляется из раствора. Осушающий агент абсорбирует любую воду в виде аэрозоля и / или водяной пар (реакция 3.). Смесь осушителя и NaOH абсорбирует CO 2 и любую воду, которая могла образоваться в результате абсорбции NaOH (реакция 4.).

Реакция 4. Поглощение CO 2 и остаточной воды.

Методы улетучивания

Другой метод прямого улетучивания включает карбонаты, которые обычно разлагаются с выделением диоксида углерода при использовании кислот. Поскольку диоксид углерода легко выделяется при нагревании, его масса напрямую определяется измеренным увеличением массы используемого абсорбирующего твердого вещества.

Примером косвенного метода является определение количества воды путем измерения потери массы образца во время нагревания. Хорошо известно, что изменение массы происходит из-за разложения многих веществ при воздействии тепла, независимо от наличия или отсутствия воды. Поскольку нужно исходить из предположения, что вода была единственным потерянным компонентом, этот метод менее удовлетворителен, чем прямые методы.

Это часто ошибочное и вводящее в заблуждение предположение неоднократно оказывалось неверным. Есть много веществ, помимо потери воды, которые могут привести к потере массы при добавлении тепла, а также ряд других факторов, которые могут этому способствовать. Увеличенную погрешность, создаваемую этим слишком часто ложным предположением, нельзя пренебрегать легкомысленно, поскольку последствия могут быть далеко идущими.

Тем не менее косвенный метод, хотя и менее надежен, чем прямой, по-прежнему широко используется в торговле. Например, он используется для измерения влажности зерновых, где для этой цели доступен ряд неточных и неточных инструментов.

Процедура

Пример

Преимущества

Гравиметрический анализ при тщательном соблюдении методов обеспечивает чрезвычайно точный анализ. Фактически, гравиметрический анализ использовался для определения атомных масс многих элементов периодической таблицы с шестизначной точностью. Гравиметрия дает очень мало места для инструментальной погрешности и не требует ряда стандартов для расчета неизвестного. Кроме того, методы часто не требуют дорогостоящего оборудования. Гравиметрический анализ, благодаря своей высокой степени точности, при правильном выполнении также может использоваться для калибровки других инструментов вместо эталонов. Гравиметрический анализ в настоящее время используется, чтобы позволить студентам бакалавриата химии / биохимии испытать лабораторию уровня магистра, и это очень эффективный инструмент обучения для тех, кто хочет посещать медицинскую школу или любую исследовательскую аспирантуру.

Недостатки

Гравиметрический анализ обычно предусматривает одновременный анализ только одного элемента или ограниченной группы элементов. Сравнение современного динамического мгновенного сжигания в сочетании с газовой хроматографией с традиционным анализом горения покажет, что первый является более быстрым и позволяет одновременно определять несколько элементов, в то время как традиционное определение позволяет определять только углерод и водород. Методы часто запутаны, и небольшое отклонение от процедуры часто может означать катастрофу для анализа (например, образование коллоидов в осадочной гравиметрии). Сравните это с надежными методами, такими как спектрофотометрия, и вы обнаружите, что анализ этими методами намного эффективнее.

Шаги в гравиметрическом анализе

После соответствующего растворения образца необходимо выполнить следующие шаги для успешной гравиметрической процедуры:

1. Приготовление раствора: это может включать несколько этапов, включая регулировку pH раствора для количественного образования осадка и получения осадка с желаемыми свойствами, устранение помех, регулирование объема образца в соответствии с количеством добавляемый осадитель.

2. Осаждение: для этого необходимо добавить раствор осадителя к раствору образца. При добавлении первых капель осаждающего агента происходит перенасыщение, затем начинается зародышеобразование, когда каждые несколько молекул осадка объединяются вместе, образуя ядро. На этом этапе добавление дополнительного осаждающего агента приведет либо к образованию новых ядер, либо к накоплению на существующих ядрах с образованием осадка. Это можно предсказать с помощью отношения фон Веймарна, где в соответствии с этим соотношением размер частиц обратно пропорционален величине, называемой относительным пересыщением, где

а. Осаждение с использованием разбавленных растворов для уменьшения Q b. Медленное добавление осаждающего агента, чтобы поддерживать Q как можно ниже c. Перемешивание раствора во время добавления осаждающего агента, чтобы избежать участков концентрации и сохранить низкий Q d. Увеличить растворимость путем осаждения из горячего раствора e. Отрегулируйте pH, чтобы увеличить S, но не слишком сильно увеличивать np, поскольку мы не хотим терять осадок при растворении f. Обычно добавляют небольшой избыток осадителя для количественного осаждения и проверяют полноту осаждения.

4. Промывка и фильтрация осадка: очень важно тщательно промыть осадок, чтобы удалить все адсорбированные частицы, которые могут увеличивать вес осадка. Следует соблюдать осторожность и не использовать слишком много воды, так как часть осадка может выпасть. Кроме того, в случае коллоидных осадков не следует использовать воду в качестве промывочного раствора, поскольку это может привести к пептизации. В таких ситуациях можно использовать разбавленную азотную кислоту, нитрат аммония или разбавленную уксусную кислоту. Обычно рекомендуется проверять наличие осадителя в фильтрате конечного промывочного раствора. Наличие осадителя означает, что требуется дополнительная промывка. Фильтрацию следует проводить с использованием фильтровальной бумаги Gooch или розжига подходящего размера.

5. Сушка и зажигание: Цель сушки (нагревание примерно до 120-150 ° C в печи) или зажигания в муфельной печи при температуре в диапазоне 600-1200 ° C состоит в том, чтобы получить материал с точно известной химической структурой, чтобы количество аналита можно точно определить.

Читайте также:  кровотечение после имплантации зубов что делать

6. Осаждение из гомогенного раствора. Чтобы свести Q к минимуму, в некоторых ситуациях мы можем генерировать осаждающий агент в среде для осаждения, а не добавлять его. Например, чтобы осаждать железо в виде гидроксида, мы растворяем в образце мочевину. При нагревании раствора в результате гидролиза мочевины образуются ионы гидроксида. Ионы гидроксида образуются во всех точках раствора, поэтому нет мест концентрации. Мы также можем регулировать скорость гидролиза мочевины и, таким образом, контролировать скорость образования гидроксида. Этот тип процедуры может быть очень полезен в случае коллоидных осадков.

Растворимость в присутствии различных ионов

Как и ожидалось из предыдущей информации, различные ионы оказывают экранирующее действие на диссоциированные ионы, что приводит к дополнительной диссоциации. Растворимость будет явно увеличиваться в присутствии различных ионов по мере увеличения произведения растворимости. Взгляните на следующий пример:

Мы больше не можем использовать константу термодинамического равновесия (т.е. при отсутствии различных ионов), и мы должны учитывать константу равновесия концентрации или использовать активности вместо концентрации, если мы используем Kth:

Источник

Сущность гравиметрического анализа

Введение

Аналитической химией называется наука, занимающаяся изучением методов и приемов определения состава веществ и их смесей. Аналитическая химия в целом относится к прикладным наукам, т. е. к наукам, имеющим прикладное практическое значение. Практическое значение аналитической химии весьма разнообразно.

Определение количественного состава исследуемого вещества, т. е. содержания отдельных составных частей его, является задачей количественного анализа. Гравиметрический анализ является одним из методов количественного анализа.

В гравиметрии определяемое вещество осаждают в виде малорастворимого соединения определенной стехиометрии. После выделения и высушивания осадок взвешивают на аналитических весах и по его массе и известной стехиометрии находят количество определяемого компонента.

Гравиметрические методы чрезвычайно точны, потому что на аналитических весах можно взвесить вещества с высокой степенью точности. Массу можно определить до пятой цифры после запятой.

Сущность гравиметрического анализа

Гравиметрическим анализом называют метод количественного химического анализа, основанный на точном измерении массы определяемого вещества или его составных частей, выделяемых в виде соединений точно известного постоянного состава. Гравиметрические определения можно разделить на три группы: методы осаждения, отгонки и выделения.

Методы осаждения основаны на осаждении определяемого компонента в виде малорастворимого химического соединения, фильтровании, прокаливании до постоянной массы и последующем определении массы полученного вещества. При этом различают осаждаемую форму – форму, в виде которой определяемое вещество осаждают, и гравиметрическую форму – форму, в виде которой определяемое вещество взвешивают.

Методы отгонки основаны на отгонке определяемого компонента в виде летучего соединения с последующим определением массы отогнанного вещества (прямое определение) или массы остатка (косвенное определение).

Методы выделения основаны на количественном выделении определяемого компонента из анализируемого раствора путем химической реакции с последующим определением массы выделенного вещества. Этот принцип положен в основу электрогравиметрического метода анализа, в котором определяемый компонент выделяется из раствора в результате электрохимических реакций, протекающих на электродах.

Среди гравиметрических методов анализа наиболее широко применяют метод осаждения.

2.1 Теоретические основы

Методами количественного анализа проверяют правильность технологических процессов, решают многие вопросы исследовательско-прикладного характера: оценивают содержание ценных веществ в рудах, биологических объектах, присутствие токсических веществ в продуктах питания, медицинских препаратах, окружающей среде и т. д.

Весовой анализ основан на том, что из определенного взвешенного количества вещества (навески) посредством соответствующих химических реакций выделяют определенную составную часть в виде нерастворимого осадка. Этот осадок отфильтровывают, промывают и после прокаливания или высушивания взвешивают на аналитических весах. Затем по массе осадка вычисляют количество этой составной части.

Весовой анализ включает несколько этапов:

1. Отбор средней пробы и подготовка вещества к анализу.

3. Растворение навески.

5. Определение полноты осаждения (проба на полноту осаждения).

6. Фильтрование и промывание осадка.

7. Определение полноты промывания.

8. Высушивание или прокаливание осадка.

9. Вычисление результатов анализа.

2.2 Механизм реакции осаждения

В процессе образования осадка различают три основных параллельно протекающих процесса:

1) образование зародышей кристаллов;

3) объединение хаотично ориентированных мелких кристаллов.

В начальный момент смешивания реагирующих компонентов раствор, содержащий эти компоненты, пересыщается и образуются мельчайшие частицы осадка – зародыши. Зародыш кристалла – наименьший агрегат атомов, молекул или ионов, который образуется в виде твердой фазы при осаждении и способен к самопроизвольному росту. Образование зародышей в пересыщенном растворе может происходить как самопроизвольно, так и при введении в раствор твердых частиц осадка, которые могут служить центром образования зародышей. Нерастворимые частицы, содержащиеся в реактивах и растворителе, также являются центром образования зародышей. Время с момента смешивания растворов реагирующих веществ до появления зародышей называют индукционным периодом, продолжительность его зависит от концентрации реагирующих веществ, а также от природы осадка. Так, при осаждении творожистого осадка AgCl индукционный период незначителен, а при осаждении кристаллических осадков – достаточно велик.

Рост кристаллов происходит за счет диффузии ионов к поверхности растущего кристалла и осаждения этих ионов на его поверхности и определяется не только диффузионными процессами, но и структурой растущих кристаллов, дефектами кристаллической решетки, внедрением в нее различных ионов и т. д.

Число и размер частиц осадка зависят от соотношения скорости образования зародышей кристаллов и скорости роста кристаллов. Если скорость образования зародышей кристаллов мала по сравнению со скоростью роста кристаллов, образуется небольшое число крупных частиц – осадок крупнокристаллический, при обратном соотношении скоростей получается мелкодисперсный осадок, состоящий из большого числа мелких частиц. Скорости обоих процессов зависят от относительного пересыщения раствора, которое определяется выражением:

где C – концентрация осаждаемого вещества в растворе, получаемая в момент внесения осадителя; S – растворимость.

2.3 Осаждаемая и гравиметрическая формы

При осаждении форма осадка может быть различной в зависимости от условий, в которых оно проводится. Важно подобрать такие условия, при которых не происходит потери вещества. Поэтому осаждение считают важнейшей операцией гравиметрического анализа. При его выполнении необходимо правильно выбрать осадитель, рассчитать его количество, соблюдать определенные условия осаждения, убедиться в полноте осаждения иона из раствора.

Осадок в процессе анализа приходится доводить до постоянной массы. Поэтому в гравиметрическом анализе различают две формы: осаждаемую и гравиметрическую.

Осаждаемая форма – тот осадок, который получается в результате химической реакции между осаждаемым ионом и осадителем.

Например: Ba2+ + SO4 2– → BaSO4

К осаждаемой форме предъявляются следующие требования:

· малая величина растворимости, около 1•10–6 моль/л,

· осадок должен быть крупнокристаллическим,

· осаждаемая форма должна легко и полно превращаться в гравиметрическую форму.

Гравиметрическая форма – то вещество, которое получается после прокаливания осаждаемой формы.

В некоторых случаях осаждаемая и гравиметрическая формы одинаковы (например, BaSO4 ). В других случаях их состав отличается друг от друга:

Осаждаемая форма Гравиметрическая форма
CaCO3 CaO
Fe(OH)3 Fe2O3
Al(OH)3 Al2O3

Требования, предъявляемые к гравиметрической форме:

1. Состав гравиметрической формы должен точно соответствовать определенной стехиометрической формуле.

2. Она не должна менять своей массы на воздухе из-за поглощения паров H2 O и CO2 или частичного разложения.

3. Содержание определяемого элемента в гравиметрической форме должно быть как можно меньше, т. к. в таком случае погрешности взвешивания в меньшей степени сказываются на результате.

Перечисленные требования к осадкам в свою очередь определяют требования к осадителям:

1. Осадитель должен образовывать с исследуемым компонентом осадок, обладающий наименьшей растворимостью.

2. Осадитель должен быть летуч, чтобы примеси его можно было удалить при прокаливании.

3. Осадитель должен быть специфичным, т. е. осаждать избирательно.

2.4 Растворимость осадков

image001

Таким образом, введение в насыщенный раствор малорастворимого вещества раствора электролита, не содержащего одноименных с малорастворимым веществом ионов, вызывает увеличение растворимости малорастворимого вещества.

Влияние одноименных ионов. Введение в раствор одноименных с осадком ионов приводит к сдвигу равновесия и, соответственно, к уменьшению растворимости осадка.

Читайте также:  кофе матча что это такое

Следует отметить, что в некоторых случаях при введении в раствор избыточного количества ионов, одноименных с осадком, растворимость осадка может увеличиваться вследствие образования растворимых комплексов.

Влияние pH среды. Если осадок представляет собой соль слабой кислоты, то при добавлении более сильной кислоты анионы осадка, находящиеся в растворе, будут взаимодействовать с ионами водорода с образованием слабой кислоты. При этом равновесие сдвигается вправо за счет протекания реакций и растворимость осадка увеличивается.

Влияние комплексообразующих реагентов. При введении в систему раствор – осадок соединений, образующих устойчивые комплексы с катионами малорастворимого электролита, растворимость осадка увеличивается.

Следует отметить, что на растворимость осадков помимо перечисленных выше факторов также оказывают влияние: 1) температура; 2) применяемый растворитель; 3) конкурирующие окислительно-восстановительные реакции.

Таким образом, для удовлетворения основного требования, предъявляемого к осадку в гравиметрическом анализе, – его малой растворимости – необходимо вести осаждение в присутствии одноименных ионов, при строго определенном pH среды, в отсутствие мешающих комплексообразующих реагентов, окислителей или восстановителей, необходимо контролировать температуру, при которой проводится осаждение.

2.5 Загрязнение осадков

Основной причиной загрязнения осадка является соосаждение. Соосаждением называют одновременное осаждение растворимого компонента с макрокомпонентом из одного и того же раствора путем адсорбции, окклюзии, образования смешанных кристаллов или механического захвата частиц других фаз. Осадки при этом загрязнены веществами, произведение растворимости для которых не достигается.

Адсорбция – увеличение поверхностной концентрации растворенных веществ на границе раздела фаз. В соответствии с правилом адсорбции на поверхности осадка в первую очередь адсорбируются ионы, входящие в состав кристаллической решетки осадка и находящиеся в избытке. Под действием заряда к поверхности осадка притягиваются противоионы, которые удерживаются слабее первично адсорбированных ионов.

Адсорбируемость ионов на поверхности осадка зависит также от концентрации ионов, находящихся в растворе, от заряда ионов и от их размера. Количество адсорбированных на поверхности осадка ионов тем больше, чем больше его поверхность, поэтому к адсорбции более склонны осадки с развитой поверхностью, т. е. аморфные. Для предотвращения явления адсорбции осаждение как аморфных, так и кристаллических осадков проводят в условиях, позволяющих получить осадки с наименьшей поверхностью; повышение температуры также способствует уменьшению адсорбции, так как адсорбция – экзотермический процесс. Количество адсорбированных примесей можно уменьшить при промывании осадков на фильтре водой или промывной жидкостью, а также в случае кристаллических осадков в процессе их старения.

Окклюзия – процесс включения посторонних веществ внутрь осадков в ходе их образования. Окклюзия характерна для кристаллических осадков и наблюдается при быстром росте кристаллов, когда часть противоионов, адсорбированных на поверхности растущего кристалла, остается внутри его. Окклюдированные примеси не удаляются промыванием, но окклюзию можно уменьшить путем переосаждения осадка, а также в процессе его старения. Степень окклюзии в процессе осаждения можно уменьшить медленным добавлением осадителя по каплям, при перемешивании.

Смешанные кристаллы – кристаллы, содержащие второй компонент, внедряющийся в решетку основного кристалла и распределенный в этой решетке. Механический захват – процесс случайного включения относительно малых количеств других фаз внутрь осадка в ходе его образования. Механический захват обусловлен несовершенством кристаллической решетки осадка, наличием в ней пустот и трещин при быстром росте кристаллов. Для уменьшения механического захвата необходимо осаждать кристаллические осадки из разбавленных растворов, добавляя осадитель медленно по каплям, при перемешивании. Переосаждение, а также старение кристаллических осадков тоже способствует устранению механического захвата примесей.

Причиной загрязнения осадков может служить также последующее осаждение, в ходе которого на поверхности ранее выделенного осадка осаждается химически отличающаяся от него форма соединения, содержащего ион, одноименный с осадком.

2.6 Получение осаждаемой формы

Условия образования кристаллических осадков

Условия осаждения Достигаемый эффект
1. Осаждение ведут из достаточно разбавленного исследуемого раствора разбавленным раствором осадителя. 1. Выпадение осадка замедляется, что способствует образованию крупных кристаллов, уменьшается осаждение.
2. Раствор осадителя прибавляют медленно, по каплям, при постоянном помешивании стеклянной палочкой. 2. Капли раствора осадителя разбавляются большим объемом анализируемого раствора, вследствие чего предотвращаются местные пересыщения, осадок увлекает меньше примесей осадителя.
3. Осаждение ведут из подогретого исследуемого раствора горячим раствором осадителя. 3. Повышение температуры в процессе осаждения ускоряет формирование кристаллической решетки и тормозит образование зародышевых центров кристаллизации.
4. Прибавлять при осаждении вещества, которые повышают растворимость осадка. 4. Повышается растворимость образующегося соединения, меньше образуется первичных кристаллов и тем крупнее они будут.
5. Отфильтровать осадок после охлаждения раствора. 5. Снижается растворимость; имеет место более полное осаждение.
6. После прибавления осадителя оставить осадок на несколько часов. 6. Происходит созревание осадка – растворение мелких кристаллов и рост крупных. При этом удаляются первоначально включенные в осадок примеси. Устраняются дефекты кристаллической решетки.

В таблицах приведены условия осаждения кристаллических и аморфных осадков, применяемых в гравиметрическом анализе. Осадки, получаемые в этих условиях, удовлетворяют основным требованиям, предъявляемым к ним.

Условия образования аморфных осадков

Условия осаждения Достигаемый эффект
1. Осаждение ведут в присутствии электролита – коагулятора. 1. Добавление в раствор электролита приводит к коагуляции осаждаемого вещества вследствие адсорбции ионов электролита на поверхности частиц.
2. Осаждение ведут из нагретого анализируемого раствора нагретым раствором осадителя. 2. Повышение температуры способствует разрушению гидратных оболочек коллоидных частиц и десорбции ионов, придающих одноименный заряд коллоидным частицам.
3. Осаждение ведут из достаточно концентрированного исследуемого раствора концентрированным раствором осадителя. 3. Из-за небольшого объема раствора получается не слишком объемистый осадой; уменьшается адсорбция осадком примесей из раствора; разрушаются гидратные оболочки коллоидных частиц.

2.7 Фильтрование и промывание осадка

Выбор приспособлений для фильтрования зависит от природы осадка и от температуры, при которой осадок переводят в гравиметрическую форму. Во всех случаях фильтрования осадка сопутствует его промывание. Промывание необходимо для удаления ионов, которые не улетучиваются при переводе осадка в гравиметрическую форму.

При промывании аморфных осадков дистиллированной водой происходит их пептизация, т. е. переход в коллоидное состояние, коллоидные частицы проходят через поры фильтра в промывные воды, отфильтровать осадок не удается. Поэтому промывная жидкость для аморфных осадков должна содержать электролиты-коагуляторы, препятствующие пептизации, такие как разбавленные растворы летучих кислот (HNO3 ), растворы солей аммония (NH4 Cl, NH4 NO3 и др.). Кроме того, адсорбированные на поверхности осадка и загрязняющие его ионы при промывании осадка указанными промывными жидкостями замещаются ионами, способными улетучиваться при прокаливании.

Промывная жидкость для кристаллических осадков обычно содержит летучие электролиты; осадки веществ с растворимостью 10–5 –10–6 моль/л промывают растворами электролитов, содержащих одноименные с осадком ионы.

Общий объем промывной жидкости не должен превышать 100 мл. Осадок более полно освобождается от загрязняющих веществ, если его промывать многократно небольшими порциями промывной жидкости, чем при двух-трехкратном промываниями большими порциях, что можно видеть из следующего расчета:

Осадок сначала промывают в стакане, в котором проводили осаждение, методом декантации. Затем осадок переносят на фильтр и промывают на нем небольшими порциями промывной жидкости.

2.8 Получение гравиметрической формы

Гравиметрическая форма может быть получена путем высушивания осадка или прокаливанием его до постоянной массы. Высушивание осадка проводят при применении органических осадителей, при этом гравиметрическая форма совпадает с формой осаждения. При прокаливании гравиметрическая форма может взаимодействовать с углеродом с изменением формулы соединения. Так, при прокаливании BaSO4 возможна следующая реакция:

image002

В этом случае необходимо продолжить прокаливание на воздухе для окисления сульфида бария в сульфат кислородом воздуха.

Температура прокаливания зависит от природы осадка. Для того чтобы выбрать температуру прокаливания, снимают термогравиметрическую кривую. При этом с помощью автоматических термовесов непрерывно фиксируют массу осадка по мере равномерного возрастания температуры в печи. Температура, пригодная для прокаливания, соответствует горизонтальному участку кривой.

image003Термогравиметрические кривые для раздельного определения кальция и магния. Термогравиметрические кривые можно применять для раздельного определения компонентов смесей. Различный ход термогравиграмм дает возможность определять содержание компонентов смеси при их совместном осаждении. Путем расчетов можно определить содержание в смеси обоих компонентов.

Читайте также:  кнопка моде на руле что значит

2.9 Применение гравиметрического метода анализа

Методы осаждения часто применяют как методы разделения. Гравиметрический анализ по методу осаждения применяют при анализе эталонов для калибровки и контроля физико-химических методов анализа, при определении состава синтезированных соединений и др.

Существует также ряд специфических гравиметрических методов определения органических соединений. Например, при определении содержания фенолфталеина его осаждают из щелочного раствора в виде тетраиодида, высушивают и взвешивают.

При достаточно большой разности в произведениях растворимости двух осадков возможно их последовательное осаждение и разделение (ПР1 :ПР2 ≥104 ). При этом первым начнет осаждаться тот ион, для которого быстрее достигается произведение растворимости. Однако последовательное осаждение не всегда обеспечивает полноту осаждения разделяемых компонентов.

Гравиметрические методы анализа менее избирательны, чем другие методы анализа. Избирательность может быть повышена при использовании органических аналитических реагентов-осадителей, реакций внешнесферного комплексообразования, приемов маскирования, регулирования pH среды и др.

Весовые определения

Схема гравиметрического анализа по методу осаждения предусматривает последовательное выполнение следующих основных операций:

1) отбор пробы и подготовка ее к анализу;

3) переведение навески вещества в раствор;

4) получение осаждаемой формы;

6) промывание осадка;

7) высушивание осадка;

8) получение гравиметрической формы.

Стаканы. В гравиметрическом методе анализа применяют химические стаканы различной вместимости. Для осаждения кристаллических осадков обычно применяют стаканы с носиком вместимостью 200-250 мл, для осаждения аморфных осадков – стаканы вместимостью 100-150 мл. При одинаковой вместимости стаканы могут быть различной высоты, лучше применять более низкие стаканы, т. к. их дно легче очищать от осадка.

Воронки, применяемые для фильтрования, могут быть различного диаметра, в зависимости от количества отделяемого осадка: они должны иметь наклон стенок 60° и удлиненный косо срезанный конец, внутренний диаметр которого в верхней части меньше, чем в нижней, благодаря этому увеличивается скорость фильтрования и промывания осадка.

Тигли. Фарфоровые тигли применяют для высокотемпературного прокаливания осадков. Фарфоровые тигли можно нагревать до температур не выше 1200°C. Кроме фарфоровых тиглей в гравиметрическом анализе для высокотемпературного сплавления и прокаливания металлические, кварцевые и другие тигли. До окончания всех операций тигли нельзя брать руками, а только при помощи металлических щипцов.

Стеклянные фильтрующие тигли представляют собой стеклянные тигли с вплавленными фильтрующими пластинками из прессованного пористого стекла. Их применяют для фильтрования с последующим высушиванием в сушильном шкафу осадков, которые разлагаются при высоких температурах.

Кроме перечисленной посуды применяют также стеклянные палочки обычные и с резиновыми насадками, часовые стекла для накрывания стаканов с осадками, промывалки, мерные цилиндры и др.

3.2 Определение кристаллизационной воды в кристаллическом хлориде бария

Кристаллизационной водой называется вода, входящая в структуру кристаллов некоторых веществ, называемых кристаллогидратами. Содержание кристаллизационной воды определяют высушиванием кристаллогидрата до постоянной массы. Температура, при которой происходит удаление кристаллизационной воды, зависит от прочности связи ее с основным веществом. Так, щавелевая кислота H2C2O4 •2H2O сушится при 110-120°C, медный купорос CuSO4•5H2 O – при 140-150°C, алюмокалиевые квасцы KAl(SO4 )•12H2 O около 230°C, хлорид бария BaCl2 •2H2O – при 120-125°C, сода Na2CO3 •10H2O – около 270°C, а глауберова соль Na2 SO4 •10H2 O – при температуре выше 300°C.

Вещество, предназначенное для определения кристаллизационной воды, должно быть воздушно-сухим. Иначе вместе с кристаллизационной водой будет определена и гигроскопическая, т. е. адсорбционная вода.

1. Берут чистый бюкс, маркируют его графитовым карандашом на пришлифованной части и помещают в сушильный шкаф с температурой 120-125°C.

2. Через 45-60 мин. Помещают бюкс с помощью тигельных щипцов в эксикатор. Когда бюкс остынет до температуры аналитических весов, взвешивают его и записывают результат в лабораторный журнал.

3. Повторяют высушивание бюкса еще 1-2 раза по 30 мин., чтобы довести его до постоянной массы. Высушивание заканчивают, когда результаты двух последних взвешиваний будут отличаться не более, чем на 0,0002 г.

4. В подготовленный бюкс помещают 1,5-2,0 г свежеперекристаллизованного воздушно-сухого хлорида бария BaCl2 •H2 O и взвесьте на аналитических весах.

1. Помещают бюкс в сушильный шкаф. Первое высушивание соли проводится 1,5-2,0 часа, строго следя, чтобы температура находилась в пределах 120-125°C. При более высокой температуре возможно частичное разложение и улетучивание соли, а при более низкой – не вся кристаллизационная вода будет удалена.

2. Затем переносят бюкс в эксикатор, оставляют охлаждаться на 15-20 мин., т. е. доводят бюкс с его содержимым до постоянной массы.

Вычисление процентного содержания воды и ошибки анализа

По результатам измерений определяют процентное содержание воды, абсолютную и относительную ошибки анализа:

1.Теоретическое содержание воды:

image004

2. Практическое содержание воды:

image005

a – навеска кристаллогидрата хлорида бария

b – масса безводного хлорида бария.

3. Абсолютная ошибка – это разность между найденным результатом анализа и действительным содержанием: Δ=14,68% – 14,75%= – 0,07%

4. Относительная ошибка – отношение абсолютной ошибки к истинному содержанию воды. Выражается она обычно в процентах и считается положительной величиной:

image006

3.3Определение содержания железа в растворе хлорида железа (III)

Последовательность выполнения работы:

2. Подкисляют его 3-5 мл 2 н. раствора HNO3 и осторожно нагревают, не допуская кипения.

3. К горячему раствору прибавляют по каплям 10% раствор аммиака до слабого, но ощутимого запаха.

4. Затем содержимое стакана тщательно перемешивают палочкой, разбавляют 100 мл горячей дистиллированной воды и еще раз перемешивают.

5. Дают осадку отстояться, а когда раствор над ним станет совершенно прозрачным, делают пробу на полноту осаждения 1-2 каплями раствора аммиака.

2. Фильтрование и промывание:

3. Высушивание и прокаливание:

1. Фильтр с осадком подсушивают в сушильном шкафу и слегка влажным переносят в тигель, предварительно доведенный до постоянной массы.

2. Осторожно озоляют фильтр на электроплитке, следя, чтобы он не вспыхнул.

3. Затем помещают тигель в муфельную печь и прокаливают до постоянной массы.

Вычисление результатов анализа

Составляют уравнение реакций:

FeCl3 + 3NH4 OH → Fe(OH)3 ↓ + 3NH4 Cl

2Fe(OH)3 → Fe2 O3 + 3H2 O

Предположим, что при анализе получены следующие данные:

масса тигля с осадком (первое взвешивание) — 16,3242 г

масса тигля с осадком (второе взвешивание) — 16,3234 г

масса тигля с осадком (третье взвешивание) — 16,3232 г

масса тигля — 16,1530 г

масса осадка — 0,1702 г

Находят массу FeCl3

159,68 г (Fe2 O3 ) соответствуют 324,24 г (FeCl3 )

0,1702 г (Fe2 O3 ) соответствуют Х г (FeCl3 )

image007

Находят массу железа:

image008

В 162,21 г FeCl3 содержится 55,85 г Fe

В 0,3457 г FeCl3 содержится Х г Fe

Это составляет 34,5%.

Используют величину фактора пересчета:

image009

a – масса прокаленного осадка,

F – фактор пересчета или аналитический множитель.

Заключение

Гравиметрический анализ – один из наиболее универсальных методов. Он применяется для определения почти любого элемента. Гравиметрические методы чрезвычайно точны, потому что на аналитических весах можно взвесить вещества с высокой степенью точности. Массу можно определить до пятой цифры после запятой.

Гравиметрический анализ – важнейший метод количественного химического анализа, в котором взвешивание является не только начальной, но и конечной стадией определения. Гравиметрический анализ сыграл большую роль при установлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др.

Чаще всего гравиметрический метод применяют для определения основных компонентов пробы, когда на выполнение анализа отводится несколько часов или десятков часов, для анализа эталонов, используемых в других методах, в арбитражном анализе, для установления состава минералов.

Список литературы

1. К.М.Ольшанова, С.К. Пискарева, К.М.Барашков «Аналитическая химия», Москва, «Химия», 1980 г.

2. «Аналитическая химия. Химические методы анализа», Москва, «Химия», 1993 г.

3. Аналитическая химия: Учебно-методическое пособие для студентов педагогических вузов.-Самара: Изд-во СамГПУ, 2007

4. Аналитическая химия. Химические методы анализа/Под. ред. О. М. Петрухина. М.: Химия, 1992. 400 с. Ил.

5. Бончев П. Р. Введение в аналитическую химию. Л.: Химия, 1978. 496 с.

Источник

Праздники по дням и их значения
Adblock
detector