что такое тяговый ток

тяговый ток

Смотреть что такое «тяговый ток» в других словарях:

Тяговый генератор — элемент электрической тяговой передачи тепловоза, преобразующий механическую энергию дизеля тепловоза в электрическую энергию, поступающую к тяговым электродвигателям. Тяговый генератор постоянного тока также используется для пуска дизеля от… … Википедия

Ток тяговый — ток тяговый: электрический ток, протекающий от тяговой подстанции к электроподвижному составу и обратно. Источник: Распоряжение ОАО РЖД от 03.04.2012 N 651р Об утверждении и вводе в действие документа Устройства и элементы рельсовых линий и… … Официальная терминология

тяговый преобразователь системы тягового электроснабжения железной дороги — Электротехническое устройство системы тягового электроснабжения железной дороги постоянного тока, предназначенное для преобразования переменного тока в постоянный ток и снабжения электрической энергией железнодорожного электроподвижного состава.… … Справочник технического переводчика

Тяговый электродвигатель — Коллекторный ТЭД электровозов ЧС2, ЧС3 Тяговый электродвигатель (ТЭД) … Википедия

Тяговый преобразователь — Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

Тяговый преобразовыватель — Содержание 1 Общее представление 2 Виды преобразователей … Википедия

Постоянный ток — Электрический ток, не изменяющийся с течением времени ни по силе, ни по направлению. П. т. возникает под действием постоянного напряжения и может существовать лишь в замкнутой цепи; во всех сечениях неразветвлённой цепи сила П. т.… … Большая советская энциклопедия

Трамвай — У этого термина существуют и другие значения, см. Трамвай (значения). Трамвай Прив … Википедия

Электроподвижной состав на напряжение 6000 В — ЭР2в−556 первый в мире электропоезд постоянного тока напряжением 6 кВ Электроподвижной состав на напряжение 6000 В опытный электроподвижной состав (электровозы и элек … Википедия

Белорусский модуль (ЖД моделизм) — Белорусский модуль (Белмодуль, БМ) это стандарт построения модульных макетов железной дороги в типоразмере H0, разработанный железнодорожными моделистами города Минска. Члены «Клуба БМ» вместе со своими коллегами по увлечению устраивают… … Википедия

Блок питания Piko ME005 — (известный также как «FZ1» или «кирпич») предназначен для преобразования напряжения бытовой электросети (переменного 220 В 50 Гц) в напряжения, необходимые для питания железнодорожных моделей. Имеет два выхода: управляемое пользователем … Википедия

Источник

Ток тяговый

«. ток тяговый: электрический ток, протекающий от тяговой подстанции к электроподвижному составу и обратно. «

Источник:

Распоряжение ОАО «РЖД» от 03.04.2012 N 651р

«Об утверждении и вводе в действие документа «Устройства и элементы рельсовых линий и тяговой рельсовой сети. Технические требования и нормы содержания»

Смотреть что такое «Ток тяговый» в других словарях:

Тяговый генератор — элемент электрической тяговой передачи тепловоза, преобразующий механическую энергию дизеля тепловоза в электрическую энергию, поступающую к тяговым электродвигателям. Тяговый генератор постоянного тока также используется для пуска дизеля от… … Википедия

тяговый преобразователь системы тягового электроснабжения железной дороги — Электротехническое устройство системы тягового электроснабжения железной дороги постоянного тока, предназначенное для преобразования переменного тока в постоянный ток и снабжения электрической энергией железнодорожного электроподвижного состава.… … Справочник технического переводчика

Тяговый электродвигатель — Коллекторный ТЭД электровозов ЧС2, ЧС3 Тяговый электродвигатель (ТЭД) … Википедия

Тяговый преобразователь — Для улучшения этой статьи желательно?: Проставить интервики в рамках проекта Интервики. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное … Википедия

Тяговый преобразовыватель — Содержание 1 Общее представление 2 Виды преобразователей … Википедия

Постоянный ток — Электрический ток, не изменяющийся с течением времени ни по силе, ни по направлению. П. т. возникает под действием постоянного напряжения и может существовать лишь в замкнутой цепи; во всех сечениях неразветвлённой цепи сила П. т.… … Большая советская энциклопедия

Тяговые электродвигатели — Тяговый электродвигатель (ТЭД) электрический двигатель, предназначенный для приведения в движение транспортных средств[1] (электровозов, электропоездов, тепловозов, трамваев, троллейбусов, электромобилей, электроходов, большегрузных автомобилей с … Википедия

ЭЛЕКТРОПОДВИЖНОЙ СОСТАВ — тяговый подвижной состав, приводимый в движение тяговыми электродвигателями, получающими питание от электроэнергетич. систем через тяговые подстанции ж. д. и контактную сеть. К Э. с. относятся электровозы, электрич. моторные вагоны, а также… … Большой энциклопедический политехнический словарь

Троллейбус — Троллейбус … Википедия

Электропоезд ЭР2 — ЭР2 ЭР2 1290 «Карелия» на станции Невская Дубровка Основные данные … Википедия

Читайте также:  что такое супер cool

Источник

По рельсам течет обратный тяговый ток — как это понять?

Опубликовано 12.06.2021 · Обновлено 26.10.2021

Возможно вам доводилось слышать такое выражение, как «обратный тяговый ток», ну или «отсасывающий фидер», но вот что бы это могло означать, так сразу понять сложно. Давайте же разберемся с этими связанными понятиями и где этот ток возникает.

Если речь идет об электрическом токе, значит мы говорим исключительно об электрифицированных железнодорожных участках, а как известно в России применяется электрификация двумя родами тока: постоянным 3000 В и переменным 25000 В. Обратный ток имеет место в обоих случаях, по этому принципиальной разницы между ними нет.

dvizhenie24 ru tyagovye podstancii 3893Тяговая подстанция

Каким образом электродвижущий подвижной состав получает электроэнергию? Для электропитания предназначена контактная сеть, которая, как известно, однопроводная. От тяговой подстанции один фазный провод подключается к контактной сети, создавая разность потенциалов… — так, а вот здесь загвоздка. Для создания этой разности, в результате которой собственно и возникнет электрический ток, нужен еще один проводник, ведь электрическая цепь должна быть замкнутой. Видели когда-нибудь троллейбус? — Уверен что да, так вот он подключается к двухпроводной контактной сети, а трамвай и электродвижущий подвижной состав используют в качестве второго контактного провода рельсовое полотно.

Рельсы отлично проводят электрический ток, и они как нельзя кстати подходят на роль второго проводника, без которого вообще невозможна никакая электродвижущая сила. Экономия и простота налицо. Теперь об обратном токе — в принципе, это довольно абстрактное понятие, которое собственно и обозначает ток, текущий от локомотива к тяговой подстанции, а «отсасывающий фидер» это как раз то устройство, которое соединяет рельсовое полотно со вторым выводом на тяговой подстанции. Следует отметить, что на одном участке, обслуживающимся одной тяговой подстанцией, по рельсовой цепи будут идти очень сильные токи, так как на одном участке могут одновременно работать несколько единиц подвижного состава, и их токи суммируются. Особенно это выражено, когда речь идет о подстанциях постоянного тока.

dvizhenie24 ru put 4841

Рельсы — это точно такая же часть электрической цепи, как и контактный провод, только потенциал которых равен потенциалу земли. Для выравнивания потенциалов, чтобы предотвратить поражение человека, наступившего на рельсы, электрическим током, рельсовая цепь дополнительно заземляется. В случае с переменным током имеет место система с глухозаземленной нейтралью. На контактную сеть подается одна из трех фаз, а к рельсам подходит «средняя точка» или нейтраль трансформатора, которая дополнительно заземлена.

Поражение электрическим током в реальности возможно только в одном случае: если в рельсовой цепи произошел обрыв. В этом месте вероятнее всего возникнет электрическая дуга, которая нанесет немалый ущерб из-за своей высокой температуры. Особенно часто дуга возникает в цепях с постоянным током. Иногда железнодорожники говорят «прорыв обратных токов», имея в виду как раз разрыв рельсовой цепи и возникшую электрическую дугу.

Автор:
Иван Беляев, ЖД-эксперт

Источник

Почему РЖД мечтает отказаться от 3000V постоянного тока в пользу 27000V переменного?

Опубликовано 15.08.2019 · Обновлено 04.02.2021

v6

Эра постоянного тока на железной дороге началась с самого появления подвижного составов на электрической тяге. На тот момент тяговые электродвигатели (собственно рабочие лошади электротяги) использовали для своей работы только постоянный ток. Человечеству уже были известны двигатели переменного тока, как асинхронные так и синхронные, вот только из-за сложной системы управления их использование для нужд любого вида транспорта было вопросом наглухо закрытым. А двигатели постоянного тока легко управлялись как в диапазоне скоростей так и в диапазоне мощностей.

Максимальное напряжение, пригодное для использования в узлах двигателей постоянного тока, а именно в щеточном аппарате коллектора, составляло около 3000 Вольт, что и было принято за максимальное напряжение для контактной сети. Дальнейшее повышение напряжение приводило бы к совсем скорому износу электродвигателей.

z2%C2%A7

Почему я собственно заговорил вдруг о повышении напряжения, как известно и сейчас электровозы тягают тысячетонные составы именно на этом напряжении, и ничего? А дело все в том, что электрическая мощность является величиной, находящейся в прямой зависимости от напряжения или силы тока в контактной сети (P=U*I). C ростом грузоперевозок и числа пассажирских поездов, возрастала и потребность в мощности контактной сети, а ввиду того, что напряжение более 3000 Вольт повышать, как мы уже выяснили, невозможно, остается эту мощность увеличивать за счет повышения силы тока. С ростом последней ложится огромная нагрузка на инфраструктуру контактной сети — это и провода с постоянно увеличивающимся сечением, это и увеличение числа трансформаторных подстанций, и, соответственно, сокращение расстояния между ними, это и огромные потери электроэнергии на этапе её передачи до электродвигателя. Закладывать в такую инфраструктуру дальнейший рост грузо- и пассажиропотока просто некуда, он достиг своего предела. Мощность электровозов постоянного тока на сегодняшний день находится на своем максимуме, и при развитии мощностей будет однозначно проигрывать электровозам переменного тока.

Читайте также:  кот мало мочится и редко что делать

a3 2Электровоз переменного тока ЭП1

Пока электрификация постоянным током, испытывая описанные трудности, все же разрасталась, технический прогресс изобрел средства выпрямления переменного тока, пригодные для использования на электровозах. Напряжение в контактной сети можно было значительно увеличить, так еще и снизить силу тока при сохранении мощности. На каждый такой электровоз переменного тока устанавливается трансформатор, который может с высоким КПД дать на выходе напряжение любого значения, пригодное для дальнейшего выпрямления и питания тяговых электродвигателей.
В итоге тяговые двигатели остались работать на постоянном токе (или пульсирующем токе), сохраняя широкий диапазон и простоту регулирования, а контактная сеть могла перейти на переменный ток повышенного напряжения. Но к сожалению разрастание постоянного тока к тому моменту уже достигло существенных масштабов и было принято решение действующие сети оставить как есть, а все последующие строить исключительно на токе переменном. Так и получилось, что у нас запад России электрифицирован на постоянном токе, а Сибирь и Дальний восток на переменном.

x4 1Зацеперы совершенно не боятся постоянного тока

Напряжение переменного тока в контактной сети РЖД составляет на сегодняшний день 25 тысяч Вольт непосредственно на контактном проводе и 27,5 кВольт на шинах трансформатора на подстанции. Сами подстанции расположены далеко друг от друга, на расстоянии до 50 километров, и при этом остается ещё большой запас мощности сетей.

Поддержка постоянного тока все равно сохраняется, но модернизация и растущие потребности в мощности, серьезно наступают такой поддержке на «пятки», а в части мощностных потребностей для высокоскоростных поездов, уже не то, что на «пятки», а на самое «горло». Многие электрические сети дорог, после очередной модернизации, были переведены на переменный ток, а все вновь электрифицированные участки, как говорилось ранее, поддерживают только переменный ток. Переменный ток в РЖД принят теперь за основу в электрической тяге.

Постоянный ток морально и физически устарел для нужд ЖД, причем очень давно, и продолжает поддерживаться исключительно из-за высоких затрат на одномоментное перепрофилирование инфраструктуры и самое главное тяговых единиц подвижного состава. Были конечно изобретены электровозы, способные работать на обоих родах тока, и на перспективное будущее активно составляются сметы и планы по переходу на переменный ток, но парадокс остается на виду — поддержка инфраструктуры постоянного тока уже потребовала в десятки раз больше средств, чем требовалось для одномоментного изменения профиля тока на всей ЖД. А теперь, с ростом нагрузок и скоростей, мы имеем дело уже не с перспективностью использования переменного тока, а его неизбежностью.

Источник

Рельсовая цепь

Рельсовая цепь представляет собой электрическую цепь, в которой имеется источник питания и нагрузка (путевое реле), а проводниками электрического тока служат рельсовые нити железнодорожного пути.

Содержание

Устройство и принцип действия

Рельсовые цепи служат для контроля свободного или занятого состояния участка пути на перегонах и станциях, контроля целостности рельсовых линий, передачи кодовых сигналов с путевых устройств на локомотив и между путевыми устройствами.

Параметры рельсовых цепей

При передаче сигнального тока от источника питания к путевому реле, часть энергии теряется за счёт падения напряжения на сопротивлении рельсовых нитей и утечек тока через сопротивление изоляции. Сопротивление изоляции рельсовой цепи зависит от типа балласта и шпал, их загрязнения, температуры и влажности окружающей среды, зазора между балластом и подошвами рельса и практически не изменяется при изменении частоты сигнального тока от 0 до 2000 Гц. Хорошими изоляционными свойствами обладают щебень и гравий, худшими — песок. Железобетонные шпалы имеют меньшее сопротивление по сравнению с деревянными, поэтому подошвы рельсов изолируются от них резиновыми прокладками. Установлена норма минимального удельного сопротивления изоляции для всех видов балласта — 1 Ом·км. В зимнее время сопротивление изоляции может достигать 100 Ом·км.

Читайте также:  синдром лагеса что такое

Удельное сопротивление рельсовой цепи зависит от частоты сигнального тока и увеличивается от 0,5 Ом/км при частоте 25 Гц до 7,9 Ом/км при частоте 780 Гц. Для стабилизации сопротивления рельсовых нитей, состоящих из звеньев, скреплённых накладками, на токопроводящих стыках устанавливаются стыковые соединители.

Виды рельсовых цепей

По принципу действия рельсовые цепи разделяются на нормально-замкнутые и нормально-разомкнутые. В нормально-замкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится под током, контролируя свободность участка и исправность всех элементов. В нормально-разомкнутых рельсовых цепях, при свободном состоянии контролируемого участка, путевое реле находится в обесточенном состоянии. Преимуществами нормально-разомкнутых рельсовых цепей являются более высокое быстродействие при фиксации занятости контролируемого участка пути (так как реле быстрее притягивает якорь, чем отпускает) и меньший расход кабеля (поскольку питающий и релейный конец рельсовой цепи совмещены). Однако в нормально-разомкнутых рельсовых цепях не контролируется исправность элементов и целостность рельсовых нитей, поэтому они применяются только на сортировочных горках.

Существуют три основных режима работы нормально-замкнутых рельсовых цепей:

В нормальном режиме сигнальный ток протекает по рельсовым нитям от источника к путевому реле, фронтовые контакты которого замыкаются, чем фиксируют свободность контролируемого участка. В шунтовом режиме рельсовые нити замыкаются между собой через малое сопротивление колёсных пар, резко уменьшается сила тока, протекающего через путевое реле, которое размыкает фронтовые контакты и замыкает тыловые, чем фиксирует занятость контролируемого участка. В контрольном режиме ток через путевое реле уменьшается (но не до нуля, из-за распространения тока через балласт в обход места разрыва), в результате чего фиксируется занятость контролируемого участка.

Для питания рельсовых цепей может использоваться постоянный или переменный сигнальный ток. Рельсовые цепи постоянного тока применяются на участках с автономной тягой, переменного — на участках, как с автономной, так и с электрической тягой.

Режим питания рельсовых цепей может быть:

В рельсовых цепях используются одноэлементные, двухэлементные, электронные и микропроцессорные путевые реле. Двухэлементные (фазочувствительные) реле имеют путевую обмотку, включенную в рельсовую цепь и местную обмотку. Срабатывание реле происходит при одинаковой частоте тока в путевой и местной обмотке и сдвиге фаз между ними на определённый угол. Достоинством фазочувствительных реле является надёжная защита от влияния тягового тока и других помех.

Для контроля занятости стрелочных переводов используются разветвлённые рельсовые цепи, которые могут иметь два или три путевых реле.

Разделение смежных рельсовых цепей

Для разделения смежных рельсовых цепей на границах контролируемых участков устанавливаются изолирующие стыки. При повреждении (сходе) изолирующих стыков должно быть исключено влияние источника питания одной рельсовой цепи на путевое реле смежной цепи, путевые реле обеих цепей должны фиксировать ложную занятость. Для этого в рельсовых цепях с непрерывным питанием при использовании постоянного тока чередуется полярность источников питания смежных цепей, при использовании переменного тока — чередуются фазы. Контроль схода стыка в кодовых рельсовых цепях осуществляется схемным путём.

Тональные рельсовые цепи на перегонах работают без изолирующих стыков. Взаимные влияния исключаются применением на смежных участках сигналов с различными несущими частотами и частотами модуляции.

Канализация обратного тягового тока

Обратный тяговый ток может пропускаться по одной нити рельсовой цепи (однониточные цепи) или по двум рельсовым нитям (двухниточные цепи). В двухниточных рельсовых цепях для пропуска тока в обход изолирующего стыка используются дроссель-трансформаторы. Возникающая, вследствие неравенства сопротивления нитей или сопротивления изоляции, асимметрия тягового тока оказывает неблагоприятное воздействие на работу АЛСН и не должна превышать 15 А. Однониточные рельсовые цепи проще двухниточных, так как в них отсутствуют дроссель-трансформаторы, но из-за неравномерности распределения тягового тока невозможна работа АЛСН, поэтому однониточные рельсовые цепи используются только на некодируемых станционных путях.

См. также

Литература

Системы железнодорожной автоматики и телемеханики: Учеб. для вузов/ Ю. А. Кравцов, В. Л. Нестеров, Г. Ф. Лекута и др.; под ред. Ю. А. Кравцова. М.: Транспорт, 1996. 400с.

Источник

Праздники по дням и их значения
Adblock
detector