что такое тупоугольные треугольники

Виды треугольников

В зависимости от величин углов и соотношения длин сторон различают следующие виды треугольников.

Виды треугольников по углам:

0 c3644 ec8ceaad S

Остроугольный треугольник — это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).

0 c3655 769fcf67 SПрямоугольный треугольник — это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).

0 c3659 290722b1 S

Тупоугольный треугольник — это треугольник, у которого один угол — тупой (то есть имеет градусную меру больше 90º).

Виды треугольников по сторонам:

0 c365a d5b6df85 S

Равносторонний треугольник (или правильный треугольник) — это треугольник, у которого все три стороны равны.

0 c365b 2b4a4017 S

Равнобедренный треугольник — это треугольник, у которого две стороны равны.

0 c365d ca87b7e S

Разносторонний треугольник — треугольник, все стороны которого имеют разную длину.

Если в задаче ничего не сказано о виде треугольника, его считают произвольным, то есть разносторонним.

Отрезки равной длины на чертеже отмечают равным количеством черточек:

Источник

Треугольник. Медиана, биссектриса, высота, средняя линия.

теория по математике 📈 планиметрия

Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.

Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.

Виды треугольников по углам

Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.

Виды треугольников по сторонам

Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.

Разносторонний Равнобедренный Равносторонний
Треугольник называется разносторонним, если у него длины всех сторон разные. На рисунке показан такого вида треугольник АВС. Треугольник называется равнобедренным, если у него две стороны равны. На рисунке показан равнобедренный треугольник АВС, у которого АВ=ВС. Треугольник называется равносторонним, если у него все стороны равны. На рисунке показан такой треугольник, у него АВ=ВС=АС.
image4 1004l301t529r449b176w150h image5 443l318t1071r318b192w210h image6 958l384t490r291b153w131h

Медиана, биссектриса, высота, средняя линия треугольника

Медиана

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.

image7 18l447t1303r351b286w135h

По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.

Биссектриса

Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.

В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.

image8 199l160t1211r544b165w122h

По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.

Высота

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.

На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.

image9 127l344t1447r480b171w126h

По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.

Читайте также:  что такое удр в логопедии

image10 632l256t661r433b203w127h

Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.

Picture 3 1

Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.

Составим отношение сторон:

Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.

Составим отношение сторон:

Теперь найдем CD=AC-AD=54-24=30

pазбирался: Даниил Романович | обсудить разбор | оценить

На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.

image13 1274l439t224r259b

Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.

pазбирался: Даниил Романович | обсудить разбор | оценить

image9 1305l355t227r396b

Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Математика. 3 класс

Конспект урока

Виды треугольников по видам углов. Закрепление изученного материала

Перечень вопросов, рассматриваемых в теме:

Какие виды треугольников различают по видам углов?

Как различать треугольники: прямоугольный, тупоугольный, остроугольный?

Геометрия – это раздел математики, изучающий геометрические фигуры и их свойства.
Треугольник – геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника.

Виды треугольников по величине углов

731454ef 5d29 43fd 97d1 45afbf181fe4

Остроугольный треугольник – это треугольник, в котором все три угла острые, т.е. меньше 90°.

d2a17024 40e8 4753 b0f4 928ebcdb51d8

Прямоугольный треугольник – это треугольник, в котором один угол прямой, т.е. 90º.

ba0d3de2 16a6 472b b1eb 9fa3375bbb78

Тупоугольный треугольник – это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.

Основная и дополнительная литература:

1. Моро М. И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 85-87.

2. Волкова С. И. математика. Тесты. 3 кл. – М.: Просвещение, 2018. С. 60-67.

3. Рудницкая В. Н. Математика. Дидактические материалы. ч.1 3 кл. – М. «Вентана- Граф», 2016, с. 47-53.

Теоретический материал для самостоятельного изучения

38c41289 64c2 4d55 aa80 9186de2fb5f0

Давайте вспомним, что вы уже знаете о видах треугольников.

Читайте также:  св билет на поезд что это такое

По длине сторон различают: разносторонние, равнобедренные и равносторонние треугольники.

Но было бы несправедливо разделить все треугольники на 3 вида по длине сторон. Ведь у каждого есть ещё и по три угла.

У вас уже появились идеи?

Острые – меньше прямого

Прямые – угол 90 градусов

Тупые – больше прямого

5961aaf0 0dc0 4cc6 b0bb 7b1c7dcce935

Оказывается, по величине углов все треугольники тоже можно разделить на 3 вида:

те, у которых все углы острые, – остроугольные,

те, у которых есть прямой угол, – прямоугольные,

те, у которых есть тупой угол, – тупоугольные.

Для того чтобы безошибочно определить вид треугольника по величине углов, необходимо измерить все три угла при помощи транспортира.

Обычно вид треугольника можно определить на глаз.

Попробуйте определить виды треугольников по величине углов без измерений.

cca7c700 cd31 4cfc 8dcd 59a405293574

тупоугольный– 2, 4, 7, 5

По величине углов различают 3 вида треугольников:

Остроугольные, прямоугольные и тупоугольные

8133d924 ae85 4b5b a42e ed01e13e0f55

Определить вид треугольника можно тремя способами:

с помощью измерений, на глаз и по условным обозначениям.

f15c44f9 ea88 444f 9a12 074a1600dcd0Теперь вы можете различать виды треугольников по сторонам и по углам. Эти знания необходимы в геометрии.

Задания тренировочного модуля

Остроугольный треугольник – это треугольник, у которого ……………………

Прямоугольный треугольник – это треугольник, у которого есть ……………………

Тупоугольный треугольник – треугольник, все стороны которого есть ……………………

Правильные варианты ответов:

Остроугольный треугольник — это треугольник, у которого все углы острые.

Прямоугольный треугольник — это треугольник, у которого есть прямой угол.

Тупоугольный треугольник — треугольник, все стороны которого есть тупой угол.

Определите вид треугольника по величине углов и выпишите номера треугольников по порядку:

Источник

Треугольник и его виды. Элементы треугольника

Треугольник – это геометрическая фигура, состоящая из трех точек, попарно соединенных между собой отрезками. Точки называются вершинами треугольника, отрезки – сторонами треугольника. Треугольник имеет три вершины и три стороны. Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Внутренние углы треугольника – это углы, образованные его сторонами. Угол А – это угол, образованный сторонами АВ и АС.

Виды треугольников по углам:

Виды треугольников по сторонам:

Элементы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы, которые пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы.

Биссектриса – это отрезок, делящий угол треугольника на две равные части. Любой треугольник имеет три биссектрисы, которые пересекаются в одной точке.

Высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Любой треугольник имеет три высоты, которые пересекаются в одной точке, называемой ортоцентром треугольника.

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

6

Серединный перпендикуляр к отрезку – прямая, перпендикулярная к этому отрезку и проходящая через его середину. Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

Читайте также:  что такое технология lte

Основные свойства треугольников

Внутренние углы треугольника относятся как 3:7:8. Найдите отношение внешних углов треугольника.

Чему равна градусная мера одного из углов прямоугольного треугольника?

Если в треугольнике один угол больше суммы двух других углов, то он

Если в треугольнике один внешний угол острый, то этот треугольник

Периметр равнобедренного треугольника равен 11 см, а основание равно 3 см. Найдите боковую сторону треугольника.

Источник

Тупоугольный треугольник, элементы, свойства, признаки и формулы

Тупоугольный треугольник, элементы, свойства, признаки и формулы.

tablitsa mendeleevae%60konomikazolotoserebroUSDAUDUSDCHFUSDGBPUSDCADUSDJPYBrent i WTI

Тупоугольный треугольник – это треугольник, у которого один угол тупой.

Тупоугольный треугольник (понятие и определение):

Тупоугольный треугольник – это треугольник, у которого один угол тупой, т.е. один из его углов лежит в пределах между 90° и 180°.

Ris 1 2

Рис. 1. Тупоугольный треугольник

BАC– тупой угол треугольника,

Ris 2

Рис. 2. Равносторонний треугольник

АВ = ВС = АС – стороны треугольника,

Risunok 7

Рис. 3. Прямоугольный треугольник

Ris 14

Рис. 4. Равнобедренный треугольник

АВ = AС – боковые стороны, BС – основание,

Хотя в тупоугольном треугольнике тупой угол больше 90 градусов, сумма углов в треугольнике всегда равна 180 градусам.

Элементы тупоугольного треугольника:

Кроме сторон и углов у тупоугольного треугольника также имеются внешние углы. Внешний угол это угол, смежный с внутренним углом треугольника. У любого треугольника, в т.ч. тупоугольного, 6 внешних углов, по 2 на каждый внутренний. Внешний угол тупого угла тупоугольного треугольника всегда будет острым углом. Внешний угол острого угла тупоугольного треугольника всегда будет тупым углом.

Ris 15

Рис. 5. Тупоугольный треугольник и внешний угол

Медиана тупоугольного треугольника (как и любого другого треугольника), соединяющая вершину треугольника с противоположной стороной, делит ее пополам, т.е. на два одинаковых отрезка.

Ris 16

Рис. 6. Тупоугольный треугольник и медиана тупоугольного треугольника

MA – медиана тупоугольного треугольника

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Ris 17

Рис. 7. Тупоугольный треугольник и высота тупоугольного треугольника

MС – высота тупоугольного треугольника

Высота тупоугольного треугольника может лежать за пределами треугольника.

Биссектриса в тупоугольном треугольнике (как и в любом другом треугольнике) делит угол пополам. Биссектрисы пересекаются в точке, которая является центром вписанной окружности.

Ris 18

Рис. 8. Тупоугольный треугольник и биссектриса угла тупоугольного треугольника

MA – биссектриса тупого угла тупоугольного треугольника

Кроме того, биссектриса тупоугольного треугольника (как и любого другого треугольника) делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Свойства тупоугольного треугольника:

Свойства тупоугольного треугольника аналогичны свойствам обычного треугольника:

1. Против большей стороны лежит больший угол, и наоборот.

Ris 19

Рис. 9. Тупоугольный треугольник

2. Против равных сторон лежат равные углы, и наоборот.

Ris 14

Рис. 10. Тупоугольный треугольник с равными боковыми сторонами

3. Сумма углов тупоугольного треугольника равна 180°.

4. Любая сторона тупоугольного треугольника меньше суммы двух других сторон и больше их разности:

Источник

Рейтинг
( Пока оценок нет )
Праздники по дням и их значения
Adblock
detector